
 BCA 1st Sem (Programming In C)

1

Syllabus

Unit-I

Logic Development: Data Representation, Flowcharts, Problem Analysis,

Decision Trees/Tables, Pseudo code and algorithms. Fundamentals:

Character set, Identifiers and Key Words, Data types, Constants,

Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic operators, Unary operators,

Relational Operators, Logical Operators, Assignment and Conditional

Operators, Library functions.

Unit-II

Data Input and Output: formatted & unformatted input output.

Control Statements: While, Do–while and For statements, Nested loops,

If–else, Switch, Break – Continue statements.

Unit-III

Functions: Brief overview, defining, accessing functions, passing

arguments to function, specifying argument data types, function

prototypes, recursion.

Arrays: Defining, processing arrays, passing arrays to a function, multi–

dimensional arrays.

Strings: String declaration, string functions and string manipulation

Program Structure Storage Class: Automatic, external and static variables.

Unit-IV

Structures & Unions: Defining and processing a structure, user defined

data types, structures and pointers, passing structures to functions, unions.

Pointers: Understanding Pointers, Accessing the Address of a Variable,

Declaration and Initialization of Pointer Variables, Accessing a Variable

through its Pointer, Pointers and Arrays

File Handling: File Operations, Processing a Data File

 BCA 1st Sem (Programming In C)

2

INDEX

S. No Contents Page No

1 Logic Development 5-34

2 Operations and Expressions 34-47

3 Data Input and Output 49-53

4 Control Statements 54-71

5 Functions 73-87

6 Arrays 88-99

7 Strings 100-112

8 Structures & Unions 114-123

9 Pointers 123-126

10 File Handling 126-133

 BCA 1st Sem (Programming In C)

3

UNIT –I

 BCA 1st Sem (Programming In C)

4

 Data Representation

•Data refers to the symbols that represent people, events, things, and ideas. Data

can be a name, a number, the colors in a photograph, or the notes in a musical

composition.

•Data Representation refers to the form in which data is stored, processed, and

transmitted.

Number systems are the technique to represent numbers in the computer system

architecture, every value that you are saving or getting into/from computer

memory has a defined number system.

Computer architecture supports following number systems.

 Binary number system

 Octal number system

 Decimal number system

 Hexadecimal (hex) number system

1) Binary Number System

A Binary number system has only two digits that are 0 and 1. Every number

(value) represents with 0 and 1 in this number system. The base of binary number

system is 2, because it has only two digits.

 BCA 1st Sem (Programming In C)

5

2) Octal number system

Octal number system has only eight (8) digits from 0 to 7. Every number (value)

represents with 0,1,2,3,4,5,6 and 7 in this number system. The base of octal

number system is 8, because it has only 8 digits.

3) Decimal number system

 BCA 1st Sem (Programming In C)

6

Decimal number system has only ten (10) digits from 0 to 9. Every number (value)

represents with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal

number system is 10, because it has only 10 digits.

4) Hexadecimal number system

A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9

and A to F. Every number (value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E

and F in this number system. The base of hexadecimal number system is 16,

because it has 16 alphanumeric values. Here A is 10, B is 11, C is 12, D is 13, E is

14 and F is 15.

 BCA 1st Sem (Programming In C)

7

 Flowchart

A flowchart is a type of diagram that represents a workflow or process. A

flowchart can also be defined as a diagrammatic representation of an algorithm, a

step-by-step approach to solving a task.

The flowchart shows the steps as boxes of various kinds, and their order by

connecting the boxes with arrows. This diagrammatic representation illustrates a

solution model to a given problem. Flowcharts are used in analyzing, designing,

documenting or managing a process or program in various fields.

ANSI/ISO

Shape
Name Description

Flow line

(Arrowhead)

Shows the process's order of operation. A line

coming from one symbol and pointing at another.

Arrowheads are added if the flow is not the

standard top-to-bottom, left-to right.

Terminal

Indicates the beginning and ending of a program or

sub-process. They usually contain the word "Start"

or "End", or another phrase signaling the start or

end of a process, such as "submit inquiry" or

https://en.wikipedia.org/wiki/File:Flowchart_Line.svg
https://en.wikipedia.org/wiki/File:Flowchart_Terminal.svg

 BCA 1st Sem (Programming In C)

8

"receive product".

Process

Represents a set of operations that changes value,

form, or location of data. Represented as a

rectangle.

Decision

Shows a conditional operation that determines

which one of the two paths the program will take.

The operation is commonly a yes/no question or

true/false test. Represented as a diamond

(rhombus).

Input/output

Indicates the process of inputting and outputting

data, as in entering data or displaying results.

Represented as a parallelogram.

On-page

Connector

Pairs of labeled connectors replace long or

confusing lines on a flowchart page. Represented by

a small circle with a letter inside.

Flow Chart Add Two number

https://en.wikipedia.org/wiki/File:Flowchart_Process.svg
https://en.wikipedia.org/wiki/File:Flowchart_Decision.svg
https://en.wikipedia.org/wiki/File:Flowchart_IO.svg
https://en.wikipedia.org/wiki/File:Flowchart_Connector.svg

 BCA 1st Sem (Programming In C)

9

Flow Chart compare two number

Advantages of using Flowcharts

 BCA 1st Sem (Programming In C)

10

 Communication: - Flowcharts are a better way of communicating the logic

of a system to all concerned.

 Effective analysis:- With the help of flowcharts, problems can be analyzed

more effectively.

 Proper documentation:-Program flowcharts serve as a good program

documentation needed for various purposes.

 Efficient coding:- Flowcharts act as a guide or blueprints during the

systems analysis and program development phase.

 Proper debugging:- Flowcharts help in the debugging process.

 Efficient program maintenance:- The maintenance of an operating

program becomes easy with the help of a flowchart.

Disadvantages of using flowcharts

 Complex logic: - Sometimes , the program logic is quite complicated . In

such a case a flowcharts become complex.

 Alterations and modification: - If alterations are required the flowcharts

may need to be redrawn completely.

 Reproduction: - Since the flowcharts symbols cannot be typed in, the

reproduction of flowcharts become a problem.

 The essentials of what has to be done can easily be lost in the technical

details of how it is to be done.

 Problem Analysis

 BCA 1st Sem (Programming In C)

11

1. Problem Analysis: Identify the issues. Be clear about what the

problem is. ...

Understand everyone's interests. ...

List the possible solutions (options) ...

Evaluate the options.

Select an option or options. ...

Document the agreement(s). ...

Agree on contingencies, monitoring, and evaluation.

 BCA 1st Sem (Programming In C)

12

2. Algorithm Development

An algorithm in general is a sequence of steps to solve a particular

problem. Algorithms are universal. The algorithm you use in C

programming language is also the same algorithm you use in every

other language. An algorithm produces the same output information

given the same input information, and several short algorithms can be

combined to perform complex tasks such as writing a computer

program.

3. Flow Chart

A flowchart is a formalized graphic representation of a logic

sequence, work or manufacturing process, organization chart, or

similar formalized structure. The purpose of a flow chart is to provide

people with a common language or reference point when dealing

with a project or process. Flowcharts use simple geometric symbols

and arrows to define relationships.

4. Program Coding

A Programming (or coding) language is a set of syntax rules that

define how code should be written and formatted. Thousands of

different programming languages make it possible for us to create

computer software, apps and websites.

5. Compile and Execution

Compilation

First, the source ‘.java’ file is passed through the compiler, which then

encodes the source code into a machine independent encoding, known

as Bytecode. The content of each class contained in the source file is

stored in a separate ‘.class’ file. While converting the source code into

the bytecode.

Execution

The class files generated by the compiler are independent of the

machine or the OS, which allows them to be run on any system. To run,

the main class file (the class that contains the method main) is passed to

 BCA 1st Sem (Programming In C)

13

the JVM, and then goes through three main stages before the final

machine code is executed.

6. Debugging and testing

Testing means verifying correct behavior. Testing can be done at all

stages of module development: requirements analysis, interface

design, algorithm design, implementation, and integration with other

modules. In the following, attention will be directed at

implementation testing. Implementation testing is not restricted to

execution testing. An implementation can also be tested using

correctness proofs, code tracing, and peer reviews, as described

below.

Debugging is a cyclic activity involving execution testing and code

correction. The testing that is done during debugging has a different

aim than final module testing. Final module testing aims to

demonstrate correctness, whereas testing during debugging is

primarily aimed at locating errors. This difference has a significant

effect on the choice of testing strategies.

7. Documentation
The documentation section contains a set of comment including the

name of the program other necessary details. Comments are ignored

by compiler and are used to provide documentation to people who

reads that code.

 Decision tree

 BCA 1st Sem (Programming In C)

14

A decision tree is a decision support tool that uses a tree-like model of decisions

and their possible consequences, including chance event outcomes, resource

costs, and utility. It is one way to display an algorithm that only contains

conditional control statements.

Decision trees are commonly used in operations research, specifically in decision

analysis, to help identify a strategy most likely to reach a goal, but are also a

popular tool in machine learning.

 Decision tree algorithm falls under the category of supervised learning. They

can be used to solve both regression and classification problems.

 Decision tree uses the tree representation to solve the problem in which each

leaf node corresponds to a class label and attributes are represented on the

internal node of the tree.

 We can represent any Boolean function on discrete attributes using the

decision tree.

 BCA 1st Sem (Programming In C)

15

Below are some assumptions that we made while using decision tree:

 At the beginning, we consider the whole training set as the root.

 Feature values are preferred to be categorical. If the values are continuous

then they are discredited prior to building the model.

 On the basis of attribute values records are distributed recursively.

 We use statistical methods for ordering attributes as root or the internal

node.

As you can see from the above image that Decision Tree works on the Sum of

Product form which is also known as Disjunctive Normal Form. In the above

image, we are predicting the use of computer in the daily life of the people.

In Decision Tree the major challenge is to identification of the attribute for the root

node in each level. This process is known as attribute selection.

 Pseudo code

Pseudocode is an informal way of programming description that does not require

any strict programming language syntax or underlying technology considerations.

It is used for creating an outline or a rough draft of a program. Pseudocode

summarizes a program’s flow, but excludes underlying details. System designers

write pseudocode to ensure that programmers understand a software project's

requirements and align code accordingly.

 BCA 1st Sem (Programming In C)

16

Advantages of pseudocode –

• Pseudocode is understood by the programmers of all types.

• It enables the programmer to concentrate only on the algorithm part of the code

development.

• It cannot be compiled into an executable program. Example, Java code : if (i <

10) { i++; } pseudocode :if i is less than 10, increment i by 1.

Let's review an example of pseudocode to create a program to add 2 numbers

together and then display the result.

Start Program

Enter two number A,B

Add the number together

Print add

End program

Compare that pseudocode to an example of a flowchart to add two numbers

 BCA 1st Sem (Programming In C)

17

Now, let's look at a few more simple examples of pseudo code. Here is a

pseudocode to compute the area of a rectangle:

Get the length, l, and width, w

Compute the area = l*w

Display the area

Now, let's look at an example of pseudocode to compute the perimeter of a

rectangle:

Enter length, l

Enter width, w

Compute Perimeter = 2*l + 2*w

Display Perimeter of a rectangle Remember, writing basic pseudocode is not like

writing an actual coding language. It cannot be compiled or run like a regular

program. Pseudocode can be written how you want. But some companies use

specific pseudocode syntax to keep everyone in the company on the same page.

Syntax is a set of rules on how to use and organize statements in a programming

language. By adhering to specific syntax, everyone in the company can read and

understand the flow of a program. This becomes cost effective and there is less

time spent finding and correcting errors.

Advantages of Pseudocode

1. Pseudocode uses English like statements. Therefore, it can be written easily

and quickly.

2. In pseudocode, each step is independent of other steps. Therefore, if any

modification is done in any step, it does not affect the codes of other module

i.e. the code has not to be rewritten if any change occurs in any other step.

3. The format of pseudocode is similar to that of the programs. Both

pseudocode and program consist a set of sequential statements and use

defined set of keywords. Therefore, pseudocode and be converted to a full-

fledged program using any programming language.

4. The learning curve of pseudocode is very smooth. Since, it is written in

highly simple language and thus can be understood by any naïve user also.

Disadvantages of Pseudocode

 BCA 1st Sem (Programming In C)

18

1. Pseudocode is textual representation of an algorithm. It does not provide

graphical representation. Therefore, sometimes, it becomes difficult to

understand the complex logic written in pseudocode.

2. When too many nested conditions are used in the pseudocode, the level of

difficulty to understand the code increases.

3. Since pseudocode focus on detailed description, a lot of practice and

concentration is required.

 Algorithm in Programming

In programming, algorithm is a set of well defined instructions in sequence to

solve the problem. An algorithm is defined as a step-by-step procedure or method

for solving a problem by a computer in a finite number of steps. Steps of an

algorithm definition may include branching or repetition depending upon what

problem the algorithm is being developed for. While defining an algorithm steps

are written in human understandable language and independent of any

programming language. We can implement it in any programming language of our

choice.

Qualities of a good algorithm

1. Input and output should be defined precisely.

2. Each steps in algorithm should be clear and unambiguous.

3. Algorithm should be most effective among many different ways to solve a

problem.

4. An algorithm shouldn't have computer code. Instead, the algorithm should

be written in such a way that, it can be used in similar programming

languages.

Write an algorithm to add two numbers entered by user.

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

Write an algorithm to find the largest among three different numbers

entered by user.

 BCA 1st Sem (Programming In C)

19

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a>b

 If a>c

 Display a is the largest number.

 Else

 Display c is the largest number.

 Else

 If b>c

 Display b is the largest number.

 Else

 Display c is the greatest number.

 Step 5: Stop

Advantages of Algorithms:

1. It is a step-wise representation of a solution to a given problem, which

makes it easy to understand.

2. An algorithm uses a definite procedure.

3. It is not dependent on any programming language, so it is easy to understand

for anyone even without programming knowledge.

4. Every step in an algorithm has its own logical sequence so it is easy to

debug.

5. By using algorithm, the problem is broken down into smaller pieces or steps

hence, it is easier for programmer to convert it into an actual program.

Disadvantages of Algorithms:

1. Algorithms is Time consuming.

2. Difficult to show Branching and Looping in Algorithms.

3. Big tasks are difficult to put in Algorithms.

Characteristics of Algorithms:

1. Precision – the steps are precisely stated(defined).

2. Uniqueness – results of each step are uniquely defined and only depend on

the input and the result of the preceding steps.

3. Finiteness – the algorithm stops after a finite number of instructions are

executed.

4. Input – the algorithm receives input.

5. Output – the algorithm produces output.

 BCA 1st Sem (Programming In C)

20

6. Generality – the algorithm applies to a set of inputs.

 Introduction to C

C is a programming language that has been developed and designed by Dennis

Ritchie in 1970’s at AT & T’s Bell laboratories of USA. It was originally written

under UNIX operating system which itself was rewritten later in C language. C

seems to be so popular because it is reliable, simple, easy to use and potable.

Programs written in C language are fast and very efficient than its predecessors. So

before starting C language , user must have an idea of its historical development .

Historical development of C

By 1960’s many computer language exist but each has been developed for a

specific purpose. Eg. COBOL for business and commercial applications,

FORTRAN for engineering and scientific purposes etc.

The C language derives its name from the fact that it is based on a language

developed by ken Thompson, another programmer at Bell laboratories . He

adapted it from a language known as basic combined programming

language(BCPL). To distinguish his version of language from BCPL, Thompson

named it B language , which was the first letter of BCPL. When the language was

modified and improved to its present state, the second letter of BCPL, C was

chosen to represent the new version by Dennis Ritchie.

Merits of C

 C is a general purpose programming language.

 C is a structural programming language.

 C is a standardized programming language.

 It is system independent.

 It has limited data types with great efficiency.

 C has high efficiency.

 It contains a powerful instruction set for manipulating of data.

 It contains the modern methods of coding loops.

 What is a Character set?

Like every other language 'C' also has its own character set. A program is a set of

instructions that when executed, generate an output. The data that is processed by a

 BCA 1st Sem (Programming In C)

21

program consists of various characters and symbols. The output generated is also a

combination of characters and symbols.

A character set in 'C' is divided into,

 Letters

 Numbers

 Special characters

 White spaces (blank spaces)

A compiler always ignores the use of characters, but it is widely used for

formatting the data. Following is the character set in 'C' programming:

1. Letters

o Uppercase characters (A-Z)

o Lowercase characters (a-z)

2. Numbers

o All the digits from 0 to 9

3. White spaces

o Blank space

o New line

o Carriage return

o Horizontal tab

4. Special characters

o Special characters in 'C' are shown in the given table,

, (comma) { (opening curly bracket)

. (period) } (closing curly bracket)

; (semi-colon) [(left bracket)

: (colon)] (right bracket)

? (question mark) ((opening left parenthesis)

' (apostrophe)) (closing right parenthesis)

" (double quotation mark) & (ampersand)

! (exclamation mark) ^ (caret)

|(vertical bar) + (addition)

/ (forward slash) - (subtraction)

\ (backward slash) * (multiplication)

~ (tilde) / (division)

_ (underscore) > (greater than or closing angle bracket)

 BCA 1st Sem (Programming In C)

22

$ (dollar sign) < (less than or opening angle bracket)

% (percentage sign) # (hash sign)

 Token

A token is the smallest unit in a 'C' program. A token is divided into six different

types as follows,

Tokens in C

 Keywords and Identifiers

In 'C' every word can be either a keyword or an identifier.

Keywords have fixed meanings, and the meaning cannot be changed. They act as a

building block of a 'C' program. There are total 32 keywords in 'C'. Keywords are

written in lowercase letters.

Following table represents the keywords in 'C',

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

https://www.guru99.com/images/1/020819_0433_CTokensKeyw1.png

 BCA 1st Sem (Programming In C)

23

default goto sizeof volatile

do if static while

An identifier is nothing but a name assigned to an element in a program. Example,

name of a variable, function, etc. Identifiers are the user-defined names consisting

of 'C' standard character set. As the name says, identifiers are used to identify a

particular element in a program. Each identifier must have a unique name.

Following rules must be followed for identifiers:

1. The first character must always be an alphabet or an underscore.

2. It should be formed using only letters, numbers, or underscore.

3. A keyword cannot be used as an identifier.

4. It should not contain any whitespace character.

5. The name must be meaningful.

 What is a Variable?

A variable is an identifier which is used to store some value. Constants can never

change at the time of execution. Variables can change during the execution of a

program and update the value stored inside it.

A single variable can be used at multiple locations in a program. A variable name

must be meaningful. It should represent the purpose of the variable.

Example: Height, age, are the meaningful variables that represent the purpose it is

being used for. Height variable can be used to store a height value. Age variable

can be used to store the age of a person

Following are the rules that must be followed while creating a variable:

1. A variable name should consist of only characters, digits and an underscore.

2. A variable name should not begin with a number.

3. A variable name should not consist of whitespace.

4. A variable name should not consist of a keyword.

5. 'C' is not a case sensitive language that means a variable named 'age' and

'AGE' are different.

Following are the examples of valid variable names in a 'C' program:

height or HEIGHT

 BCA 1st Sem (Programming In C)

24

_height

_height1

My_name

Following are the examples of invalid variable names in a 'C' program:

1height

Hei$ght

My name

For example, we declare an integer variable my_variable and assign it the value

48:

int my_variable;

my_variable = 48;

By the way, we can both declare and initialize (assign an initial value) a variable in

a single statement:

int my_variable = 48;

Local variables

Before learning about the local variable, we should learn about the function block

and function parts. There are two parts of the function block (block means region

of the function between curly braces in C)

1. Declaration part - Region where we declare all variables which are going

to be used within the function (this part starts from starting curly brace "{").

2. Executable part - Other statements except the declarations are the

executable statements.

Global variables

Global variables are the variables which are declared or defined below the header

files inclusion section or before the main () function. These variables have global

scope to the program in which they are declared. They can be accessed or modified

in any function of the program.

Global variable can also be accessed in another files too (for this, we have to

declare these variables as extern in associate header file and header file needs to be

included within particular file).#include <stdio.h>

#include<stdio.h>

/*global variables*/

 BCA 1st Sem (Programming In C)

25

int a,b;

int main()

{

 /*local variables*/

 int x,y;

 x=10;

 y=20;

 setValues();

 printf("a=%d, b=%d\n",a,b);

 printf("x=%d, y=%d\n",x,y);

 return 0;

}

 Constants

Constants are the fixed values that never change during the execution of a

program. Following are the various types of constants:

I. Integer constants

An integer constant is nothing but a value consisting of digits or numbers. These

values never change during the execution of a program. Integer constants can be

octal, decimal and hexadecimal.

1. Decimal constant contains digits from 0-9 such as,

Example, 111, 1234

 BCA 1st Sem (Programming In C)

26

Above are the valid decimal constants.

2. Octal constant contains digits from 0-7, and these types of constants are

always preceded by 0.

Example, 012, 065

Above are the valid decimal constants.

3. Hexadecimal constant contains a digit from 0-9 as well as characters from

A-F. Hexadecimal constants are always preceded by 0X.

Example, 0X2, 0Xbcd

Above are the valid hexadecimal constants.

The octal and hexadecimal integer constants are very rarely used in programming

with 'C'.

II. Character constants

A character constant contains only a single character enclosed within a single

quote (''). We can also represent character constant by providing ASCII value of it.

Example, 'A', '9'

Above are the examples of valid character constants.

III. String constants

A string constant contains a sequence of characters enclosed within double quotes

("").

Example, "Hello", "Programming"

These are the examples of valid string constants.

IV. Real Constants

Like integer constants that always contains an integer value. 'C' also provides real

constants that contain a decimal point or a fraction value. The real constants are

also called as floating point constants. The real constant contains a decimal point

and a fractional value.

 BCA 1st Sem (Programming In C)

27

V. Symbolic Constants

Symbolic Constant is a name that substitutes for a sequence of characters or a

numeric constant, a character constant or a string constant.

When program is compiled each occurrence of a symbolic constant is replaced by

its corresponding character sequence.

The syntax of Symbolic Constants in C

#define name text

where name implies symbolic name in caps.

text implies value or the text.

For example,

#define printf print

#define MAX 50

#define TRUE 1

#define FALSE 0

#define SIZE 15

 Expressions

An expression is a formula in which operands are linked to each other by the use of

operators to compute a value. An operand can be a function reference, a variable,

an array element or a constant.

There are four types of expressions exist in C:

o Arithmetic expressions

o Relational expressions

o Logical expressions

o Conditional expressions

Each type of expression takes certain types of operands and uses a specific set of

operators. Evaluation of a particular expression produces a specific value.

 Statement

A statement is a command given to the computer that instructs the computer to

take a specific action, such as display to the screen, or collect input. A

computer program is made up of a series of statements.

 BCA 1st Sem (Programming In C)

28

Following are the statements which is used in programming In C

1. IF statement

2. IF Else Statement

3. Break statement

4. Goto statement

5. Switch statement

6. Continue statement

 Data types

'C' provides various data types to make it easy for a programmer to select a suitable

data type as per the requirements of an application. Following are the three data

types:

I. Build-in and primary data types

II. Derived data types

III. User-defined data types

I. Build-in .and Primary Data Types

There are five primary fundamental data types,

 BCA 1st Sem (Programming In C)

29

1. int for integer data

2. char for character data

3. float for floating point numbers

4. double for double precision floating point numbers

5. void

Data type
Size in

bytes
 Range

Char or signed char 1 -128 to 127

Unsigned char 1 0 to 255

int or signed int 2 -32768 to 32767

Unsigned int 2 0 to 65535

Short int or Unsigned short int 2 0 to 255

Signed short int 2 -128 to 127

Long int or Signed long int 4 -2147483648 to 2147483647

Unsigned long int 4 0 to 4294967295

float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

Long double 10 3.4E-4932 to 1.1E+4932

Note: In C, there is no Boolean data type.

 BCA 1st Sem (Programming In C)

30

1. Integer data type

Integer is nothing but a whole number. The range for an integer data type varies

from machine to machine. The standard range for an integer data type is -32768 to

32767.

An integer typically is of 2 bytes which means it consumes a total of 16 bits in

memory. A single integer value takes 2 bytes of memory. An integer data type is

further divided into other data types such as short int, int, and long int.

Each data type differs in range even though it belongs to the integer data type

family. The size may not change for each data type of integer family.

The short int is mostly used for storing small numbers, int is used for storing

averagely sized integer values, and long int is used for storing large integer values.

Whenever we want to use an integer data type, we have place int before the

identifier such as,

int age;

Here, age is a variable of an integer data type which can be used to store integer

values.

2. Floating point data type

Like integers, in 'C' program we can also make use of floating point data types.

The 'float' keyword is used to represent the floating point data type. It can hold a

floating point value which means a number is having a fraction and a decimal part.

A floating point value is a real number that contains a decimal point. Integer data

type doesn't store the decimal part hence we can use floats to store decimal part of

a value.

Generally, a float can hold up to 6 precision values. If the float is not sufficient,

then we can make use of other data types that can hold large floating point values.

The data type double and long double are used to store real numbers with precision

up to 14 and 80 bits respectively.

While using a floating point number a keyword float/double/long double must be

placed before an identifier. The valid examples are,

 BCA 1st Sem (Programming In C)

31

float division;

double BankBalance;

3. Character data type

Character data types are used to store a single character value enclosed in single

quotes.

A character data type takes up-to 1 byte of memory space.

Example,

Char letter;

4. Void data type

A void data type doesn't contain or return any value. It is mostly used for defining

functions in 'C'.

Example,

Type declaration of a variableand using data types

int main()

 {

int x, y;

float salary = 13.48;

char letter = 'K';

x = 25;

y = 34;

int z = x+y;

printf("%d \n", z);

printf("%f \n", salary);

printf("%c \n", letter);

return 0;}

Output: 59

13.480000

K

 BCA 1st Sem (Programming In C)

32

We can declare multiple variables with the same data type on a single line by

separating them with a comma. Also, notice the use of format specifiers in printf

output function float (%f) and char (%c) and int (%d).

II. User Define Data Types

C allows the feature called type definition which allows programmers to define

their identifier that would represent an existing data type. There are three such

types:

Data types Description Description

Structure It is a package of variables of different types under

a single name. This is done to handle data

efficiently. "struct" keyword is used to define a

structure.

Union These allow storing various data types in the same

memory location. Programmers can define a union

with different members, but only a single member

can contain a value at a given time. It is used for

Enum Enumeration is a special data type that consists of

integral constants, and each of them is assigned

with a specific name. "enum" keyword is used to

define the enumerated data type.

III. Derived Data Types

C supports three derived data types:

Data types Description Description

Arrays Arrays are sequences of data items

having homogeneous values. They have

adjacent memory locations to store

 BCA 1st Sem (Programming In C)

33

values.

Function Function pointers allow referencing

functions with a particular signature.

Pointers These are powerful C features which are

used to access the memory and deal

with their addresses.

 C Operators

Operators are used in c for manipulating the data store into the variables .

Types of Operators

I. Arithmetic

II. Relational

III. Logical

IV. Bitwise

I. C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition,

subtraction, multiplication, division etc on numerical values (constants and

variables).

 BCA 1st Sem (Programming In C)

34

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* multiplication

/ division

% remainder after division (modulo division)

Example 1: Arithmetic Operators

// Working of arithmetic operators

#include<stdio.h>

int main()

{

int a =9,b =4, c;

c = a+b;

printf("a+b = %d \n",c);

c = a-b;

printf("a-b = %d \n",c);

c = a*b;

printf("a*b = %d \n",c);

c = a/b;

printf("a/b = %d \n",c);

c = a%b;

printf("Remainder when a divided by b = %d \n",c);

return0;

}

Output

a+b = 13

a-b = 5

a*b = 36

a/b = 2

 BCA 1st Sem (Programming In C)

35

II. C Relational Operators

A relational operator checks the relationship between two operands. If the relation

is true, it returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 is evaluated to 0

> Greater than 5 > 3 is evaluated to 1

< Less than 5 < 3 is evaluated to 0

!= Not equal to 5 != 3 is evaluated to 1

>= Greater than or equal to 5 >= 3 is evaluated to 1

<= Less than or equal to 5 <= 3 is evaluated to 0

Example 4: Relational Operators

1. // Working of relational operators

#include<stdio.h>

int main()

{

int a =5, b =5, c =10;

 printf("%d == %d is %d \n", a, b, a == b);

 printf("%d == %d is %d \n", a, c, a == c);

 printf("%d > %d is %d \n", a, b, a > b);

 printf("%d > %d is %d \n", a, c, a > c);

 printf("%d < %d is %d \n", a, b, a < b);

 BCA 1st Sem (Programming In C)

36

 printf("%d < %d is %d \n", a, c, a < c);

 printf("%d != %d is %d \n", a, b, a != b);

 printf("%d != %d is %d \n", a, c, a != c);

 printf("%d >= %d is %d \n", a, b, a >= b);

 printf("%d >= %d is %d \n", a, c, a >= c);

 printf("%d <= %d is %d \n", a, b, a <= b);

 printf("%d <= %d is %d \n", a, c, a <= c);

return0;

}

Output

5 == 5 is 1

5 == 10 is 0

5 > 5 is 0

5 > 10 is 0

5 < 5 is 0

5 < 10 is 1

5 != 5 is 0

5 != 10 is 1

5 >= 5 is 1

5 >= 10 is 0

5 <= 5 is 1

5 <= 10 is 1

III. C Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon

whether expression results true or false. Logical operators are commonly used in

decision making in C programming.

Operator Meaning Example

 BCA 1st Sem (Programming In C)

37

Operator Meaning Example

&&
Logical AND. True only if all

operands are true

If c = 5 and d = 2 then, expression

((c==5) && (d>5)) equals to 0.

||
Logical OR. True only if either

one operand is true

If c = 5 and d = 2 then, expression

((c==5) || (d>5)) equals to 1.

!
Logical NOT. True only if the

operand is 0

If c = 5 then, expression !(c==5) equals

to 0.

Example 5: Logical Operators

// Working of logical operators

#include<stdio.h>

int main()

{

int a =5, b =5, c =10, result;

 result =(a == b)&&(c > b

 printf("(a == b) && (c > b) is %d \n", result);

 result =(a == b)&&(c < b);

 printf("(a == b) && (c < b) is %d \n", result);

 result =(a == b)||(c < b);

 printf("(a == b) || (c < b) is %d \n", result);

 result =(a != b)||(c < b);

 printf("(a != b) || (c < b) is %d \n", result);

 result =!(a != b);

 BCA 1st Sem (Programming In C)

38

 printf("!(a == b) is %d \n", result);

 result =!(a == b);

 printf("!(a == b) is %d \n", result);

return0;

}

Output

(a == b) && (c > b) is 1

(a == b) && (c < b) is 0

(a == b) || (c < b) is 1

(a != b) || (c < b) is 0

!(a != b) is 1

!(a == b) is 0

Explanation of logical operator program

 (a == b) && (c > 5) evaluates to 1 because both operands (a == b) and (c >

b) is 1 (true).

 (a == b) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).

 (a == b) || (c < b) evaluates to 1 because (a = b) is 1 (true).

 (a != b) || (c < b) evaluates to 0 because both operand (a != b) and (c < b) are

0 (false).

 !(a != b) evaluates to 1 because operand (a != b) is 0 (false). Hence, !(a != b)

is 1 (true).

 !(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, !(a == b) is 0

(false).

IV. C Bitwise Operators

During computation, mathematical operations like: addition, subtraction,

multiplication, division, etc are converted to bit-level which makes processing

faster and saves power.

 BCA 1st Sem (Programming In C)

39

Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

V. Other Operators

 Comma Operator

Comma operators are used to link related expressions together. For example:

1. int a, c =5, d;

 The sizeof operator

The sizeof is a unary operator that returns the size of data (constants, variables,

array, structure, etc).

Example 6: sizeof Operator

#include<stdio.h>

int main()

{

int a;

float b;

double c;

 BCA 1st Sem (Programming In C)

40

char d;

 printf("Size of int=%lu bytes\n",sizeof(a));

 printf("Size of float=%lu bytes\n",sizeof(b));

 printf("Size of double=%lu bytes\n",sizeof(c));

 printf("Size of char=%lu byte\n",sizeof(d));

return0;

}

Output

Size of int = 4 bytes

Size of float = 4 bytes

Size of double = 8 bytes

Size of char = 1 byte

Other operators such as ternary operator ? Reference operator &, dereference

operator * and member selection operator -> will be discussed in later tutorials.

 C Increment and Decrement Operators

C programming has two operators increment ++ and decrement -- to change the

value of an operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value

by 1. These two operators are unary operators, meaning they only operate on a

single operand.

Example 2: Increment and Decrement Operators

 #include<stdio.h>

int main()

 BCA 1st Sem (Programming In C)

41

{

int a =10, b =100;

float c =10.5, d =100.5;

 printf("++a = %d \n",++a);

 printf("--b = %d \n",--b);

 printf("++c = %f \n",++c);

 printf("--d = %f \n",--d);

return0;

}

Output

++a = 11

--b = 99

++c = 11.500000

--d = 99.500000

Here, the operators ++ and -- are used as prefixes. These two operators can also be

used as postfixes like a++ and a--. Visit this page to learn more about how

increment and decrement operators work when used as postfix.

 C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most

common assignment operator is =

Operator Example Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

 BCA 1st Sem (Programming In C)

42

Operator Example Same as

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

Example 3: Assignment Operators

// Working of assignment operators

#include<stdio.h>

int main()

{

int a =5, c;

c = a;

printf("c = %d\n", c);

 c += a;

 printf("c = %d\n", c);

 c -= a;

 printf("c = %d\n", c);

 c *= a;

 printf("c = %d\n", c);

 c /= a;

 printf("c = %d\n", c);

 c %= a;

 printf("c = %d\n", c);

return0;

}

Output
c = 5

c = 10

c = 5

c = 25

c = 5

c = 0

 Conditional Operator

The conditional operator is also known as a ternary operator. The conditional

statements are the decision-making statements which depends upon the output of

the expression. It is represented by two symbols, i.e., '?' and ':'.

 BCA 1st Sem (Programming In C)

43

As conditional operator works on three operands, so it is also known as the ternary

operator.

The behavior of the conditional operator is similar to the 'if-else' statement as 'if-

else' statement is also a decision-making statement.

Syntax of a conditional operator

1. Expression1? expression2: expression3;

The pictorial representation of the above syntax is shown below:

Meaning of the above syntax.

o In the above syntax, the expression1 is a Boolean condition that can be

either true or false value.

o If the expression1 results into a true value, then the expression2 will execute.

o The expression2 is said to be true only when it returns a non-zero value.

o If the expression1 returns false value then the expression3 will execute.

o The expression3 is said to be false only when it returns zero value.

 C Standard Library Functions

In this tutorial, you'll learn about the standard library functions in C. More

specifically, what are they, different library functions in C and how to use them in

your program.

C Standard library functions or simply C Library functions are inbuilt functions in

C programming.

https://www.javatpoint.com/c-if-else

 BCA 1st Sem (Programming In C)

44

The prototype and data definitions of these functions are present in their respective

header files. To use these functions we need to include the header file in our

program. For example,

If you want to use the printf() function, the header file <stdio.h> should be

included.

#include <stdio.h>

int ma in()

{

 printf("Catch me if you can.");

}

If you try to use printf() without including the stdio.h header file, you will get an

error.

Advantages of Using C library functions

1. They work

One of the most important reasons you should use library functions is simply

because they work. These functions have gone through multiple rigorous testing

and are easy to use.

2. The functions are optimized for performance

Since, the functions are "standard library" functions, a dedicated group of

developers constantly make them better. In the process, they are able to create the

most efficient code optimized for maximum performance.

3. It saves considerable development time

Since the general functions like printing to a screen, calculating the square root,

and many more are already written. You shouldn't worry about creating them once

again.

4. The functions are portable

With ever-changing real-world needs, your application is expected to work every

time, everywhere. And, these library functions help you in that they do the same

thing on every computer.

Library Functions in Different Header Files

C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

https://www.programiz.com/c-programming/library-function/ctype.h

 BCA 1st Sem (Programming In C)

45

C Header Files

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/string.h

 BCA 1st Sem (Programming In C)

46

UNIT-II

 BCA 1st Sem (Programming In C)

47

 Formatted & Unformatted input output

• Unformatted Input/Output functions

I. getchar()

II. putchar()

III. getch()

IV. putch()

V. gets()

VI. puts()

VII. prinf()

VIII. scanf()

I.getchar():This function reads a character-type data from standard input. • It reads

one character at a time till the user presses the enter key.

Example: char c; c = getchar();

#include<stdio.h>

 void main()

{

char c;

 printf(“enter a character”);

 c=getchar();

 printf(“c = %c ”,c);

 }

II.putchar() : This function prints one character on the screen at a time which is

read by standard input.

 BCA 1st Sem (Programming In C)

48

Example: char c= ‘c’;

 putchar (c);

#include<stdio.h>

void main()

{

char ch;

 printf(“enter a character: ”);

 scanf(“%c”, ch);

 putchar(ch);

 }

enter a character: r

r

III. getch() & getche():These functions read any alphanumeric character from the

standard input device The character entered is not displayed by the getch()

function until enter is pressed .The getche() accepts and displays the character.

#include

void main()

{

printf(“Enter two alphabets:”);

getche();

 getch();

 }

 BCA 1st Sem (Programming In C)

49

Enter two alphabets a

IV.putch():This function prints any alphanumeric character taken by the standard

input device.

 Example:

 #include<stdio.h>

 void main()

 {

 char ch;

 printf(“Press any key to continue”);

ch = getch();

 printf(“ you pressed:”);

 putch(ch);

 }

Press any key to continue

You pressed : e

V. gets():This function is used for accepting any string until enter key is pressed

(string will be covered later).

#include <stdio.h>

#include <string.h>

void main()

{

char ch[30];

 BCA 1st Sem (Programming In C)

50

 printf(“Enter the string:”);

 gets(ch);

 printf(“Entered string: %s”, ch);

 }

 Enter the string: Use of data!

Entered string: Use of data!

VI.puts() :This function prints the string or character array. It is opposite to gets().

#include <stdio.h>

#include <string.h>

 void main()

{

 char string[40];

 strcpy(str, "This is a test string");

 puts(string);

}

VII.printf():

 In C programming language, printf() function is used to print the “character,

string, float, integer, octal and hexadecimal values” onto the output screen.

 We use printf() function with %d format specifier to display the value of an

integer variable.

 Similarly %c is used to display character, %f for float variable, %s for string

variable, %lf for double and %x for hexadecimal variable.

 To generate a newline,we use “\n” in C printf() statement.

int a=10;

 BCA 1st Sem (Programming In C)

51

double d=13.4;

printf("%f%d",d,a);

VIII.scanf():In C programming language, scanf() function is used to read

character, string, numeric data from keyboard.Consider below example program

where user enters a character. This value is assigned to the variable “ch” and

then displayed.

Then, user enters a string and this value is assigned to the variable “str” and

then displayed.

int a;

float b;

scanf("%d%f",&a,&b);

Example program for printf() and scanf() functions in C programming

language:

#include <stdio.h>

int main()

{

char ch;

char str[100];

 printf("Enter any character \n");

 scanf("%c", &ch);

 printf("Entered character is %c \n", ch);

 printf("Enter any string (upto 100 character) \n");

 scanf("%s", &str);

 printf("Entered string is %s \n", str);

}

 BCA 1st Sem (Programming In C)

52

 Control Statements:

Control statements enable us to specify the flow of program control; ie, the order in

which the instructions in a program must be executed. They make it possible to

make decisions, to perform tasks repeatedly or to jump from one section of code to

another.

Control Statements are Two Types

I. Decision Making

II. Case

III. Looping

I. Decision Control Statements:In decision control statements (if-else and

nested if), group of statements are executed when condition is true. If

condition is false, then else part statements are executed.

There are 3 types of decision making control statements in C language. They are,

 if statements

 if else statements

 else if ladder

 BCA 1st Sem (Programming In C)

53

 if statements:This is the simplest form of ‘if’ statement. The expression is to

be placed in parenthesis. It can be any logical expression.The Block is

executed when the given condition is true.

Syntax

If(Condition)

{

Block1;

}

Example:

Program check number is Positive

#include<stdio.h>

void main()

{

int a;

a=1;

 BCA 1st Sem (Programming In C)

54

if(a>0)

{

printf(“number is positive”);

}

}

Output

number is positive

 if else statements :In the “if” statement seen earlier, we can take some

action if expression is true. But if expression is false there is no action. We

can include an action for both conditions (i.e. true or false) by using if-else

statement. If condition is true block1 is executed otherwise block2.

Syntax

If(Condition)

{

Block1;

 BCA 1st Sem (Programming In C)

55

}

else

{

Block2;

}

Example:

Program check number is Positive

#include<stdio.h>

void main()

{

int a;

a=1;

if(a>0)

{

printf(“number is positive”);

}

else

{

printf(“number is negative “);

}

}

Output

number is positive

 BCA 1st Sem (Programming In C)

56

 else if ladder
The evolutions of if-else –if ladder or multiple alternative if statement is

carried out from top to bottom. Each conditional expression is tested and if

found true only then its corresponding statements is executed. In a situation

where none of the nested conditions is found true then the final else part is

executed.

Syntax

if (condition 1)

Block

else if (condition 2)

Block

else if (condition 3)

Block

*print days of week input enter by user from 1 to 7

#include<stdio.h>

int main()

{

int day;

printf("enter key from 1 to 7 to print days of week");

scanf("%d", &day);

if(day==1)

printf("Today is Monday");

else if(day==2)

 BCA 1st Sem (Programming In C)

57

printf("Today is Tuesday");

else if(day==3)

printf("Today is Wednesday");

else if(day==4)

printf("Today is thursday");

else if(day==5)

printf("Today is Friday");

else if(day==6)

printf("Today is Saturday");

else if(day==7)

printf("Today is Sunday");

else

printf("wrong input");

}

 Other decision making statements

jump: Java supports three jump statement: break, continue and goto. These three

statements transfer control to other part of the program.

1. Break: In Java, break is majorly used for:

 Terminate a sequence in a switch statement

 To exit a loop.

 Used as a “civilized” form of goto.

Using break to exit a Loop

#include <stdio.h>

 BCA 1st Sem (Programming In C)

58

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

break;

 }

 printf("value of a: %d\n", a);

 a++;

 } while(a < 20);

 return 0;

}

 BCA 1st Sem (Programming In C)

59

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

2. Continue: The continue statement in C programming works somewhat

like the break statement. Instead of forcing termination, it forces the next

iteration of the loop to take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and

increment portions of the loop to execute. For

the while and do...while loops, continue statement causes the program

control to pass to the conditional tests.

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 printf("value of a: %d\n", a);

 BCA 1st Sem (Programming In C)

60

 a++;

 } while(a < 20);

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

3. goto: The goto statement is a jump statement which is sometimes also

referred to as unconditional jump statement. The goto statement can be used

to jump from anywhere to anywhere within a function.

 BCA 1st Sem (Programming In C)

61

Example

#include <stdio.h>

int main()

{

int number=1;

while(number<=10)

{

if(number==4)

 goto end;

 printf("Number is : %d", number);

 end:

 printf("Bye Bye !!!");

}

return 0;

}

Output

 First run:

 Number is : 1 2 3

 Bye Bye !!!

II. switch – case
Another form of statement available for selective execution is the switch

statement. It causes particular group of statements to be selected from

 BCA 1st Sem (Programming In C)

62

several available group.

 The general format is as follows.

switch (expression)

 Statement;

Where statement consist of one more case statements followed by a colon

and group of statements.

switch (expression)

{

case expression 1 : statement 1;

statement 2;

break;

 BCA 1st Sem (Programming In C)

63

case expression 2 : statement 1;

statement 2;

break;

default :

statement 1;

statement 2;

}

The expression should result in an integer value or character value. First the

expression following switch is solved.

#include<stdio.h>

void main ()

{

int j = 2;

switch (j)

{

case 1 :

printf ("nI am in case 1.");

break;

case 2:

printf ("nI am in case 2.");

break;

case 3:

printf ("nI am in case 3.");

 BCA 1st Sem (Programming In C)

64

default:

printf ("nI am in default.");

}

}

III. Looping: Sometimes we want some part of our code to be executed more

than once. We can either repeat the code in our program or use loops

instead. It is obvious that if for example we need to execute some part of

code for a hundred times it is not practical to repeat the code. Alternatively

we can use our repeating code inside a loop.

Types of Loops in C

 while

 do-while

 for

 while: The statements within the while loop would keep on getting executed till

the condition being tested remains true. When the condition becomes false, the

control passes to the first statement that follows the body of the while loop. It is

entry control loop.

Syntax

Initialization;

While(condition)

{

Block;

Increment/decrement;

}

Three important parts of Loop

i) initialization:it is the starting Point of loop.

 BCA 1st Sem (Programming In C)

65

ii) Test Condition:it is the given condition which is to

be checked.

iii) Increment/decrement :for Increment (++) is used

and(--) is used for decrement to given statements.

Example:

 #include <stdio.h>

 int main ()

 {

int a = 10;

 while(a < 14) {

 printf("value of a: %d\n", a);

 a++;

 }

 return 0;

 }

output

value of a:10

value of a:11

value of a:12

value of a:13

 BCA 1st Sem (Programming In C)

66

 do while:The while and for loops test the termination condition at the top. By

contrast, the third loop in C, the do-while, tests at the bottom after making each

pass through the loop body; the body is always executed at least once.

Syntax

Initialization;

do

{

Block;

 Increment/decrement ;

}while (condition);

Example

#include <stdio.h>

int main () {

 int a = 10;

 do

{

 printf("value of a: %d\n", a);

 a + +;

 }

while(a < 14);

 return 0;

}

output

 BCA 1st Sem (Programming In C)

67

value of a:10

value of a:11

value of a:12

value of a:13

 for loop: for loop is something similar to while loop but it is more

complex. for loop is constructed from a control statement that determines how

many times the loop will run and a command section. Command section is

either a single command or a block of commands.

Syntax

 for (initialization; test condition; increment/decrement)

{

Block;

}

Example

#include <stdio.h>

int main ()

{

 int a;

 for(a = 10; a <14; a + +)

{

 printf("value of a: %d\n", a);

 }

 BCA 1st Sem (Programming In C)

68

 return 0;

}

output

value of a:10

value of a:11

value of a:12

value of a:13

BASIS FOR

COMPARISON
WHILE DO-WHILE

General Form while (condition) {

statements; //body of loop

}

do{

.

statements; // body of loop.

.

} while(Condition);

Controlling

Condition

In 'while' loop the

controlling condition

appears at the start of the

loop.

In 'do-while' loop the

controlling condition appears

at the end of the loop.

Iterations The iterations do not occur

if, the condition at the first

iteration, appears false.

The iteration occurs at least

once even if the condition is

false at the first iteration.

type It entry Control Loop It Exit Control Loop.

 BCA 1st Sem (Programming In C)

69

 UNIT-III

 BCA 1st Sem (Programming In C)

70

 Function

A function is a group of statements that together perform a task. Every C program

has at least one function.You can divide up your code into separate functions. How

you divide up your code among different functions is up to you, but logically the

division is such that each function performs a specific task.

The advantages of using functions are:

 Avoid repetition of codes.

 Increases program readability.

 Divide a complex problem into simpler ones.

 Reduces chances of error.

 Modifying a program becomes easier by using function.

 Three parts of Function

 Function declaration(Prototype):A function declaration tells the compiler

about a function's name, return type, and parameters.

Syntax

 Returntype Functionname (parameterlist);

A function definition in C programming consists of a function header and

a function body. Here are all the parts of a function −

 BCA 1st Sem (Programming In C)

71

 Return Type − A function may return a value. The return_type is the data

type of the value the function returns. Some functions perform the desired

operations without returning a value. In this case, the return_type is the

keyword void.

 Function Name − This is the actual name of the function. The function

name and the parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is

invoked, you pass a value to the parameter. This value is referred to as actual

parameter or argument. The parameter list refers to the type, order, and

number of the parameters of a function. Parameters are optional; that is, a

function may contain no parameters

 Function Definition: function definition in which number of statements are

write down into body of the function.

Syntax

 Returntype Functionname(parameterlist)

{

Statements;

}

 Function call:A program calls a function, the program control is transferred

to the called function. A called function performs a defined task and when its

return statement is executed or when its function-ending closing brace is

reached, it returns the program control back to the main program.

Syntax

Functionname();

Types of Function in C

 BCA 1st Sem (Programming In C)

72

 Predefined Functions: The Predefined Functions are those which are

already defined into C Like printf(),scanf(),main() etc.

 User defined Functions: These Functions are made by program itself

to perforam any task and solve any problem.

 User defined Functions: Categories of User defined Functions are

1) Function with no arguments and no return value

2) Function with no arguments and a return value

3) Function with arguments and no return value/ Specifying argument data types

4) Function with arguments and a return value/ Function with argument

Categories of User defined Functions (Function Prototypes)

1) Function with no arguments and no return value: This Type of Function

have no arguments and any return value that void.

Syntax:

Void functionname (void);

Example:

#include<stdio.h>

void sum(void); //function declaration

Function with no arguments and no return value

Function with no arguments and a return value

Function with arguments and no return value

Function with arguments and a return value

 BCA 1st Sem (Programming In C)

73

void sum(void)

{

int a,b,c;

printf(“enter two number\n”); //function defination

scanf(“%d%d”,&a,&b);

c=a+b;

printf(“sum is %d”,c);

}

void main()

{

sum(); //function call

}

Output

enter two number

10 20

sum is 30

2) Function with no arguments and a return value:This Type of Function

have no arguments with any return value that is the calculated back to the

main().

Syntax:

returnvalue functionname (void);

Example:

#include<stdio.h>

int sum(void); //function declaration

int sum(void)

 BCA 1st Sem (Programming In C)

74

{

int a,b,c;

printf(“enter two number\n”); //function defination

scanf(“%d%d”,&a,&b);

c=a+b;

return(c);

}

void main()

{

int c;

c=sum(); //function call

printf(“sum is %d”,c);

}

Output

enter two number

10 20

sum is 30

3) Function with arguments and No return value:This Type of Function

have arguments that are the value which is enter from the main(), the

arguments have datatype and every argument separated by commas(,). These

have no any return value .

Syntax:

void functionname (parameter list);

Example:

#include<stdio.h>

void sum(int a,int b); //function declaration

void sum(int a,int b)

{

 BCA 1st Sem (Programming In C)

75

int a,b,c;

c=a+b; //function defination

printf(“sum is %d”,c);

}

void main()

{

int a,b;

printf(“enter two number\n”);

scanf(“%d%d”,&a,&b);

sum(a,b); //function call

}

Output

enter two number

10 20

sum is 30

4) Function with arguments and with return value:This Type of Function

have two way communication between user define function and main().the

user define function accept the data from main() and back the result to

main().

Syntax:

void functionname (parameter list);

Example:

#include<stdio.h>

int sum(int a,int b); //function declaration

int sum(int a,int b)

{

 BCA 1st Sem (Programming In C)

76

int a,b,c;

c=a+b; //function defination

return (c);

}

void main()

{

Int a,b, c;

printf(“enter two number\n”);

scanf(“%d%d”,&a,&b);

c=sum(a,b); //function call

printf(“sum is %d”,c);

}

Output

enter two number

10 20

sum is 30

what formal and actual arguments

Formal Argument :

The formal arguments are the arguments in the function declaration. The

scope of formal arguments is local to the function definition in which they

are used. They belong to the called function.

Actual arguments :

The arguments that are passed in a function call are called actual arguments.

These arguments are defined in the calling function.

Example:

#include<stdio.h>

int sum(int a,int b); //function declaration

int sum(int a,int b) formal arguments

 BCA 1st Sem (Programming In C)

77

{

int a,b,c;

c=a+b; //function definition

return (c);

}

void main()

{

Int a,b, c;

printf(“enter two number\n”);

scanf(“%d%d”,&a,&b);

c=sum(a,b); //function call Actual Arguments

printf(“sum is %d”,c);

}

 Call by value :

In call by value, a copy of actual arguments is passed to formal arguments of

the called function and any change made to the formal arguments in the called

function have no effect on the values of actual arguments in the calling

function.

In call by value, actual arguments will remain safe, they cannot be modified

accidentally.

Example using Call by Value

The classic example of wanting to modify the caller's memory is

a swapByValue() function which exchanges two values. For C uses call by

value, the following version of swap swapByValue() will not work...

#include <stdio.h>

void swapByValue(int a, int b)

{

 int t;

 BCA 1st Sem (Programming In C)

78

 t = a;

a = b;

 b = t;

printf(" Values In user define a: %d, b: %d\n", a,b);

}

 int main() /* Main function */

{

 int a1 = 10;

int b1 = 20;

/* actual arguments will be as it is */

 swapByValue(a1, b1);

printf ("Values In main a1: %d, b1: %d\n", a1,b1);

}OUTPUT

======

Values In user define a: 20, b: 10

Values In main a1: 10, b1: 20

 Call by Reference

In call by reference, to pass a variable n as a reference parameter, the

programmer must pass a pointer to n instead of n itself. The formal parameter

will be a pointer to the value of interest. The calling function will need to

use & to compute the pointer of actual parameter. The called function will

need to dereference the pointer with *where appropriate to access the value of

interest. Here is an example of a correct swap swapByReference() function.

So, now you got the difference between call by value and call by reference!

#include <stdio.h>

 void swapByValue(int *a, int *b); /* Prototype */

 BCA 1st Sem (Programming In C)

79

void swapByValue(int *a, int * b)

{

 int t;

 t = *a;

*a = *b;

*b = t;

printf(" Values In user define *a: %d, *b: %d\n", *a,*b);

}

 int main() /* Main function */

{

 int a1 = 10;

int b1 = 20;

/* actual arguments will be as it is */

 swapByValue(&a1,& b1);

printf("Values In main a1: %d, b1: %d\n", a1, b1);

}

OUTPUT

======

Values In user define a: 20, b: 10

Values In main a1: 20, b1: 10

CALL BY VALUE CALL BY REFERENCE

While calling a function, we pass

values of variables to it. Such

While calling a function, instead of

passing the values of variables, we

 BCA 1st Sem (Programming In C)

80

functions are known as “Call By

Values”.

pass address of variables(location of

variables) to the function known as

“Call By References.

In this method, the value of each

variable in calling function is copied

into corresponding dummy variables

of the called function.

In this method, the address of actual

variables in the calling function are

copied into the dummy variables of

the called function.

With this method, the changes made

to the dummy variables in the called

function have no effect on the values

of actual variables in the calling

function.

With this method, using addresses we

would have an access to the actual

variables and hence we would be able

to manipulate them.

// C program to illustrate

// call by value

#include <stdio.h>

// Function Prototype

void swapx(int x, int y);

// Main function

// C program to illustrate

// Call by Reference

#include <stdio.h>

// Function Prototype

void swapx(int*, int*);

// Main function

 BCA 1st Sem (Programming In C)

81

int main()

{

 int a = 10, b = 20;

 // Pass by Values

 swapx(a, b);

 printf("a=%d b=%d\n", a, b);

 return 0;

}

// Swap functions that swaps

// two values

void swapx(int x, int y)

{

 int t;

 t = x;

 x = y;

 y = t;

 printf("x=%d y=%d\n", x, y);

}

Output:

x=20 y=10

a=10 b=20

int main()

{

 int a = 10, b = 20;

 // Pass reference

 swapx(&a, &b);

 printf("a=%d b=%d\n", a, b);

 return 0;

}

// Function to swap two variables

// by references

void swapx(int* x, int* y)

{

 int t;

 t = *x;

 *x = *y;

 *y = t;

 printf("x=%d y=%d\n", *x, *y);

}

Output:

x=20 y=10

a=20 b=10

 BCA 1st Sem (Programming In C)

82

Thus actual values of a and b remain

unchanged even after exchanging the

values of x and y.

Thus actual values of a and b get

changed after exchanging values of x

and y.

In call by values we cannot alter the

values of actual variables through

function calls.

In call by reference we can alter the

values of variables through function

calls.

Values of variables are passes by

Simple technique.

Pointer variables are necessary to

define to store the address values of

variables.

Syntax

Returntype

functioname(parameterlist)

{

Body;

}

Syntax

Returntype

functioname(*parameterlist)

{

Body;

}

 Recursion

What is Recursion?

The process in which a function calls itself directly or indirectly is called

 BCA 1st Sem (Programming In C)

83

recursion and the corresponding function is called as recursive function. Using

recursive algorithm, certain problems can be solved quite easily

What is base condition in recursion?

In the recursive program, the solution to the base case is provided and the

solution of the bigger problem is expressed in terms of smaller problems.

#include <stdio.h>

/* Function declaration */

void printNaturalNumbers(int lowerLimit, int upperLimit);0

int main()

{

 int lowerLimit, upperLimit;

 /* Input lower and upper limit from user */

 printf("Enter lower limit: ");

 scanf("%d", &lowerLimit);

 printf("Enter upper limit: ");

 scanf("%d", &upperLimit);

 printf("All natural numbers from %d to %d are: ", lowerLimit, upperLimit);

 printNaturalNumbers(lowerLimit, upperLimit);

 return 0;

}

/**

 * Recursively prints all natural number between the given range.

 */

void printNaturalNumbers(int lowerLimit, int upperLimit)

 BCA 1st Sem (Programming In C)

84

{

 if(lowerLimit > upperLimit)

 return;

 printf("%d, ", lowerLimit);

 // Recursively call the function to print next number

 printNaturalNumbers(lowerLimit + 1, upperLimit);

}

Diffrence between Recursion and Iteration

Iteration Recursion

Allows the execution of a sequential

set of statements repetitively using

conditional loops.

A statement in the function’s body

calls the function itself.

There are loops with a control

variable that need to be initialized,

incremented or decremented and

a conditional control statement that

continuously gets checked for

the termination of execution.

A recursive function must comprise

of at least one base case i.e. a

condition for termination of

execution.

The value of the control variable

continuously approaches the value in

the conditional statement.

The function keeps on converging to

the defined base case as

it continuously calls itself.

A control variable stores the value,

which is then updated, monitored, and

compared with the conditional

statement.

Stack memory is used to store the

current state of the function.

Infinite loops keep utilizing CPU

cycles until we stop their execution

manually.

If there is no base case defined,

recursion causes a stack overflow

error.

The execution of iteration is

comparatively faster.

The execution of recursion is

comparatively slower.

 BCA 1st Sem (Programming In C)

85

 Arrays: Defining, processing arrays, passing arrays to a function, multi–

dimensional arrays.

1. Array:Arrays a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a collection of

data, but it is often more useful to think of an array as a collection of variables

of the same type.

 Types of Arrays in C

There are three type of array in C language:

 One dimensional array:

 Two dimensional array:

 Multi– dimensional arrays:

 BCA 1st Sem (Programming In C)

86

 One dimensional array:

o Single or One Dimensional array is used to represent and store data in

a linear form.

o Array having only one subscript variable is called One-Dimensional

array

o It is also called as Single Dimensional Array or Linear Array

Syntax

 BCA 1st Sem (Programming In C)

87

Datatype arrayname[size];

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the

number of elements required by an array as follows −

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer

constant greater than zero and type can be any valid C data type. For example, to

declare a 10-element array called balance of type double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double

numbers.

Initializing Arrays

You can initialize an array in C either one by one or using a single statement as

follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of

elements that we declare for the array between square brackets [].

Example of storing elements into array

#include<stdio.h>

 BCA 1st Sem (Programming In C)

88

void main()

{

int a[5];

int i;

printf(“enter the number atleast 5\n”);

for(i=0;i<5;i++)

{

scanf(“%d”,&a[i]);

}

printf(“elements you enter are\n”);

for(i=0;i<5;i++)

{

printf(“%d\n”,a[i]);

}}

Output

enter the number atleast 5

10 20 30 40 50

elements you enter are

10

20

30

40

50

 Two dimensional array:

o Array having more than one subscript variable is called Multi-

dimensional array.

o Multi Dimensional Array is also called as Matrix.

Declaration of 2D Array

While declaring the 2D Array there are two subscript values.

 BCA 1st Sem (Programming In C)

89

Syntax:

Datatype Arrayname[rowsize][columnsize];

Initialization of 2D Array

There are two ways to initialize a two Dimensional arrays during declaration.

int disp[2][4] = {

 {10, 11, 12, 13},

 {14, 15, 16, 17}

};

Example of 2D Array

#include<stdio.h>

 BCA 1st Sem (Programming In C)

90

int main()

{

 /* 2D array declaration*/

 int disp[2][3];

 /*Counter variables for the loop*/

 int i, j;

 for(i=0; i<2; i++) {

 for(j=0;j<3;j++) {

 printf("Enter value for disp[%d][%d]:", i, j);

 scanf("%d", &disp[i][j]);

 }

 }

 //Displaying array elements

 printf("Two Dimensional array elements:\n");

 for(i=0; i<2; i++) {

 for(j=0;j<3;j++) {

 printf("%d ", disp[i][j]);

 if(j==2){

 printf("\n");

 }

 }

 }

 BCA 1st Sem (Programming In C)

91

 return 0;

}

Output:

Enter value for disp[0][0]:1

Enter value for disp[0][1]:2

Enter value for disp[0][2]:3

Enter value for disp[1][0]:4

Enter value for disp[1][1]:5

Enter value for disp[1][2]:6

Two Dimensional array elements:

1 2 3

4 5 6

 Multi– dimensional arrays:In C, we can define multidimensional arrays in

simple words as array of arrays. Data in multidimensional arrays are stored in

tabular form (in row major order).

General form of declaring N-dimensional arrays:

data_type array_name[size1][size2]....[sizeN];

data_type: Type of data to be stored in the array.

 Here data_type is valid Cdata type

array_name: Name of the array

size1, size2,... ,sizeN: Sizes of the dimensions

Examples:

 BCA 1st Sem (Programming In C)

92

Two dimensional array:

int two_d[10][20];

Three dimensional array:

int three_d[10][20][30];

Initializing Three-Dimensional Array: Initialization in Three-Dimensional array

is same as that of Two-dimensional arrays. The difference is as the number of

dimension increases so the number of nested braces will also increase.

Method 1:

int x[2][3][4] =

 {

 { {0,1,2,3}, {4,5,6,7}, {8,9,10,11} },

 BCA 1st Sem (Programming In C)

93

 { {12,13,14,15}, {16,17,18,19}, {20,21,22,23} }

 };

// C program to print elements of Three-Dimensional

// Array

#include<stdio.h>

int main()

{

 // initializing the 3-dimensional array

 int x[2][3][2] =

 {

 { {0,1}, {2,3}, {4,5} },

 { {6,7}, {8,9}, {10,11} }

 };

 // output each element's value

 for (int i = 0; i < 2; ++i)

 {

 BCA 1st Sem (Programming In C)

94

 for (int j = 0; j < 3; ++j)

 {

 for (int k = 0; k < 2; ++k)

 {

 printf(“%d”, x[i][j][k]);

 }

printf(“\n”);

 }

 }

 return 0;

}

 Passing arrays to a function:

Passing a single element of an array to a function is similar to passing variable

to a function.

Example

// Program to calculate average by passing an array to a function

#include <stdio.h>

 BCA 1st Sem (Programming In C)

95

float average(float age[]);

float average(float age[])

{

int i;

float avg, sum = 0.0;

for (i = 0; i < 6; ++i) {

sum += age[i];

}

avg = (sum / 6);

return avg;

}

int main()

{

float avg, age[] = {23.4, 55, 22.6, 3, 40.5, 18};

avg = average(age); // Only name of an array is passed as an argument

printf("Average age = %.2f", avg);

return 0;

 BCA 1st Sem (Programming In C)

96

}

Output

Average age = 27.08

 Advantages of Arrays

 It is better and convenient way of storing the data of same datatype with

same size.

 It allows us to store known number of elements in it.

 It allocates memory in contiguous memory locations for its elements. It does

not allocate any extra space/ memory for its elements. Hence there is no

memory overflow or shortage of memory in arrays.

 Iterating the arrays using their index is faster compared to any other methods

like linked list etc.

 It allows to store the elements in any dimensional array - supports

multidimensional array.

 Disadvantages of Arrays

 It allows us to enter only fixed number of elements into it. We cannot alter

the size of the array once array is declared. Hence if we need to insert more

number of records than declared then it is not possible. We should know

array size at the compile time itself.

 BCA 1st Sem (Programming In C)

97

 Inserting and deleting the records from the array would be costly since we

add / delete the elements from the array, we need to manage memory space

too.

 It does not verify the indexes while compiling the array. In case there is any

indexes pointed which is more than the dimension specified, then we will get

run time errors rather than identifying them at compile time.

 Strings: String declaration, string functions and string manipulation Program

Structure Storage Class: Automatic, external and static variables.

1.String:Strings are defined as an array of characters. The difference between a

character array and a string is the string is terminated with a special character ‘\0’.

int a[3];

 Declaration of strings: Declaring a string is as simple as declaring a one

dimensional array. Below is the basic syntax for declaring a string.

char str_name[size]; char name[10]={‘L’,’U’,’D’,’H’,’I’,’A’,’N’,’A’}

Initializing a String: A string can be initialized in different ways. We will explain

this with the help of an example.

char name[5]={‘R’,’A’,’H’,’U’,’L’};

// C program to illustrate strings

#include<stdio.h>

int main()

{

 // declare and initialize string

 BCA 1st Sem (Programming In C)

98

 char name[5]={‘R’,’A’,’H’,’U’,’L’};

 // print string

 printf("%c",str);

 return 0;

}

Output:

RAHUL

Second way to use String

// C program to illustrate strings

#include<stdio.h>

int main()

{

 // declare and initialize string

 char name[5]=”RAHUL”;

 // print string

 printf("%s",str);

 return 0;

}

 BCA 1st Sem (Programming In C)

99

Output:

RAHUL

Here (“ “)Double quotes is used while initializing the string instead of(‘

‘)Single quotes.

 String Manipulations In C Programming Using Library Functions

To use String Handling function “string.h” Header file is use

The list ofLibrary Functions is given below

Function Work of Function

strlen() Calculates the length of string

strcpy() Copies a string to another string

strcat() Concatenates(joins) two strings

strcmp() Compares two string

strlwr() Converts string to lowercase

strupr() Converts string to uppercase

1)strlen():The function takes a single argument, i.e, the string variable whose

length is to be found, and returns the length of the string passed.

Syntax:

https://www.programiz.com/c-programming/library-function/strlen
https://www.programiz.com/c-programming/library-function/strcpy
https://www.programiz.com/c-programming/library-function/strcat
https://www.programiz.com/c-programming/library-function/strcmp

 BCA 1st Sem (Programming In C)

100

size_t strlen(const char *str);

Example:

#include <stdio.h>

#include <string.h>

int main()

{

 char a[20];

 printf("Enter string: ");

 gets(c);

 printf("Length of string a = %d \n",strlen(a));

 return 0;

}

Output

Enter string: rahul

 BCA 1st Sem (Programming In C)

101

Length of string a = 5

2)strcpy():The strcpy() function copies the string pointed by source (including the

null character) to the character array destination.This function returns character

array destination.

Syntax:

char* strcpy(char* destination, const char* source);

Example

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[10]= "awesome";

 char str2[10];

 strcpy(str2, str1);

printf(“str2= %s”,str2);

 return 0;

}

Output

 BCA 1st Sem (Programming In C)

102

str2=awesome

3)strcat():It takes two arguments, i.e, two strings or character arrays, and stores

the resultant concatenated string in the first string specified in the argument.

Syntax

char *strcat(char *dest, const char *src)

Example:

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[5] = "rahul";

char str2[6] = "sharma";

 printf(“old string is = %s”,str1);

strcat(str1,str2);

 printf(“new string is =%s”,str1);

 return 0;

}

Output:

old string is = rahul

new string is =rahulsharma

4)strcmp():The strcmp() function takes two strings and return an integer.

 BCA 1st Sem (Programming In C)

103

The strcmp() compares two strings character by character. If the first character of

two strings are equal, next character of two strings are compared. This continues

until the corresponding characters of two strings are different or a null character '\0'

is reached.

Return Value from strcmp()

Return Value Remarks

0 if both strings are identical (equal)

negative

if the ASCII value of first unmatched character is less than

second.

positive

integer

if the ASCII value of first unmatched character is greater than

second.

Example: C strcmp() function

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "abcd", str2[] = "abCd", str3[] = "abcd";

 int result;

 // comparing strings str1 and str2

 result = strcmp(str1, str2);

 printf("strcmp(str1, str2) = %d\n", result);

 // comparing strings str1 and str3

 BCA 1st Sem (Programming In C)

104

 result = strcmp(str1, str3);

 printf("strcmp(str1, str3) = %d\n", result);

 return 0;

}

Output

strcmp(str1, str2) = 32

strcmp(str1, str3) = 0

The first unmatched character between string str1 and str2 is third character.

The ASCII value of 'c' is 99 and the ASCII value of 'C' is 67. Hence, when

strings str1 and str2 are compared, the return value is 32.

When strings str1 and str3 are compared, the result is 0 because both strings are

identical.

5)strupr():The strupr() function is used to converts a given string to uppercase.

Syntax:

char *strupr(char *str);

Example:

// c program to demonstrate

// example of strupr() function.

#include<stdio.h>

#include<string.h>

int main()

{

 char str[5] = "hello";

 printf("%s\n", strupr (str));

 BCA 1st Sem (Programming In C)

105

 return 0;

}

Output:

HELLO

6)strlwr():The strlwr() function is used to converts a given string to lowercase.

Syntax:

char *strlwr(char *str);

Example:

// c program to demonstrate

// example of strlwr() function.

#include<stdio.h>

#include<string.h>

int main()

{

 char str[5] = "HELLO";

 printf("%s\n", strlwr (str));

 return 0;

}

Output:

hello

 Structure Storage Class: Automatic, external and static variables

Structure Storage Class:

 BCA 1st Sem (Programming In C)

106

Storage Classes are used to describe the features of a variable/function. These

features basically include the scope, visibility and life-time which help us to trace

the existence of a particular variable during the runtime of a program.

1)auto :This is the default storage class for all the variables declared inside a

function or a block. Hence, the keyword auto is rarely used while writing programs

in C language. Auto variables can be only accessed within the block/function they

have been declared and not outside them (which defines their scope).

Syntax

auto datatype variablename;

Example:

#include <stdio.h>

void main()

{

 BCA 1st Sem (Programming In C)

107

 auto int a = 32;

 printf("Value of the variable adeclared as auto: %d\n", a);

}

Output

Value of the variable a declared as auto:32

2)extern :Extern storage class simply tells us that the variable is defined elsewhere

and not within the same block where it is used. Basically, the value is assigned to it

in a different block and this can be overwritten/changed in a different block as

well. Hence, the keyword extern is rarely used while writing programs in C

language.

Syntax

extern datatype variablename;

Example:

#include <stdio.h>

void main()

{

 extern int a ;

 printf("Value of the variable a declared as extern: %d\n", a);

 a=34;

 printf("Value of the variable adeclared as extern: %d\n", a);

}

 BCA 1st Sem (Programming In C)

108

Output

Value of the variable adeclared as extern:0

Value of the variable adeclared as extern:34

3)static:This storage class is used to declare static variables which are popularly

used while writing programs in C language. Static variables have a property of

preserving their value even after they are out of their scope! Hence, static variables

preserve the value of their last use in their scope. So we can say that they are

initialized only once and exist till the termination of the program. Hence, the

keyword static is rarely used while writing programs in C language.

Syntax

static datatype variablename;

Example:

#include <stdio.h>

static int a=10;

void main()

{

 static int b=20 ;

 printf("value of a %d”,a);

 printf("value of b %d”,b);

}

Output

value of a10

value of b20

 BCA 1st Sem (Programming In C)

109

4)register: This storage class declares register variables which have the same

functionality as that of the auto variables. The only difference is that the compiler

tries to store these variables in the register of the microprocessor if a free register is

available.This makes the use of register variables to be much faster than that of the

variables stored in the memory during the runtime of the program. If a free register

is not available, these are then stored in the memory only.

Syntax:

storage_class var_data_type var_name;

#include <stdio.h>

void main()

{

 register int b=20 ;

 printf("value of a %d”,a);

 printf("value of b %d”,b);

}

Output

value of b20

 BCA 1st Sem (Programming In C)

110

UNIT -IV

 Structures

 BCA 1st Sem (Programming In C)

111

A structure is a user defined data type in C. A structure creates a data type that can

be used to group items of possibly different types into a single type.

‘struct’ keyword is used to create a structure.

Declaration of Structure

A structure variable can either be declared with structure declaration or as a

separate declaration like basic types.

Syntax

 struct structurename

{

Datatype variablename1;

Datatype variablename2;

.

.

Datatype variablename n;

}

 Following is an example.

struct address

{

 char name[50];

 char street[100];

 char city[50];

 char state[20];

 int pin;

};

 BCA 1st Sem (Programming In C)

112

Initialization of Structure

Structure members cannot be initialized with declaration. For example the

following C program fails in compilation.it always initialize into main() and user

define() by using the object of structure.

Syntax

Struct structurename objectname;

access structure elements

Structure members are accessed using dot (.) operator.

Syntax

Objectname.variablename=value;

Example

#include<stdio.h>

struct student

{

int rollno;

char name[20];

};

void main()

{

 struct student obj; //declaring structure object

printf(“enter rollno and name\n”);

scanf(“%d%s”,&obj.rollno,&obj.name);

 printf(“ rollno is %d \n”,obj.rollno);

 printf(“ name is %s \n”,obj.name);

 BCA 1st Sem (Programming In C)

113

}

Output

enter rollno and name

23 rahul

rollno is 23

name is rahul

2) Array of Structure : Array of structures in C can be defined as the collection of

multiple structures variables where each variable contains information about

different entities. The array of structures in C are used to store information about

multiple entities of different data types. The array of structures is also known as the

collection of structures.

Syntax

Struct structurename objectname[size];

Example

 BCA 1st Sem (Programming In C)

114

#include<stdio.h>

#include <string.h>

struct student{

int rollno;

char name[10];

};

int main(){

int i;

struct student st[5];

printf("Enter Records of 5 students");

for(i=0;i<5;i++){

printf("\nEnter Rollno:");

scanf("%d",&st[i].rollno);

printf("\nEnter Name:");

scanf("%s",&st[i].name);

}

printf("\nStudent Information List:");

for(i=0;i<5;i++){

printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

}

 return 0;

}

Output:

 BCA 1st Sem (Programming In C)

115

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

 Passing structure to function

 A structure can be passed to any function from main function or from any

sub function.

 Structure definition will be available within the function only.

 It won’t be available to other functions unless it is passed to those functions

by value or by address(reference).

#include <stdio.h>

 BCA 1st Sem (Programming In C)

116

#include <string.h>

struct student

{

 int id;

 float percentage;

};

void func(struct student record);

void func(struct student record)

{

 printf(" Id is: %d \n", record.id);

 printf(" Percentage is: %f \n", record.percentage);

}

int main()

{

 struct student record;

 record.id=1;

 record.percentage = 86.5;

 func(record);

 return 0;

}

Output

Id is: 1

Percentage is: 86.500000

 Structure using Pointer

Dot(.) operator is used to access the data using normal structure variable and arrow

(->) is used to access the data using pointer variable.

Syntax:

 BCA 1st Sem (Programming In C)

117

Objectname->variablename=value;

Example

#include<stdio.h>

#include <string.h>

struct student

{

 int id;

 char name[30];

 float percentage;

};

int main()

{

 int i;

 struct student record1 = {1, "Raju", 90.5};

 struct student *ptr;

 ptr = &record1;

 printf("Records of STUDENT1: \n");

 printf(" Id is: %d \n", ptr->id);

 printf(" Name is: %s \n", ptr->name);

 printf(" Percentage is: %f \n\n", ptr->percentage);

 return 0;

}

Output

Records of STUDENT1:

Id is: 1

Name is: Raju

Percentage is: 90.500000

 Union

 Like Structures, union is a user defined data type. In union, all members share the

same memory location.

 BCA 1st Sem (Programming In C)

118

A union is a special data type available in C that allows to store different data types

in the same memory location. You can define a union with many members, but

only one member can contain a value at any given time

How is the size of union decided by compiler?
Size of a union is taken according the size of largest member in union.The Union

keyword is used to declare the unions in C.

Syntax

 union structurename

{

Datatype variablename1;

Datatype variablename2;

.

.

Datatype variablename n;

};

Example

#include<stdio.h>

union student

{

int rollno;

char name[20];

};

void main()

{

 BCA 1st Sem (Programming In C)

119

 struct student obj; //declaring structure object

printf(“enter rollno and name\n”);

scanf(“%d%s”,&obj.rollno,&obj.name);

 printf(“ rollno is %d \n”,obj.rollno);

 printf(“ name is %s \n”,obj.name);

}

BASIS OF

COMPARISON
STRUCTURE UNION

Basic The separate memory location is

allotted to each member of the

'structure'.

All members of the

'union' share the same

memory location.

Declaration struct struct_name{

type element1;

type element2;

.

.

} variable1, variable2, ...;

union u_name{

type element1;

type element2;

.

.

} variable1, variable2,

...;

keyword 'struct' 'union'

Size Size of Structure= sum of size of

all the data members.

Size of Union=size of

the largest members.

Store Value Stores distinct values for all the

members.

Stores same value for all

the members.

At a Time A 'structure' stores multiple

values, of the different members,

of the 'structure'.

A 'union' stores a single

value at a time for all

members.

 BCA 1st Sem (Programming In C)

120

Pointers: Understanding Pointers, Accessing the Address of a Variable,

Declaration and Initialization of Pointer Variables, Accessing a Variable through

its Pointer, Pointers and Arrays

 Pointers

Pointer variable must be declared before using it as we know in C Programming

Language, every variable must be declared before using. Generally if we declare an

integer type variable that hold a unique memory address from the computer

system, we do it in C like below:

Int Variable_name;

Similarly, we can declare a pointer variable but adding an asterisk ('*' sign) after

data type and before variable name. For that there are three type of pointer

declaration style in C. They are:

1. int* variable_name;

2. int * variable_name;

3. int *variable_name;

The pointer in C language is a variable which stores the address of another

variable. This variable can be of type int, char, array, function, or any other

pointer. The size of the pointer depends on the architecture. However, in 32-bit

architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an

integer.

1. int n = 10;

2. int* p = &n;

 Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also

known as indirection pointer used to dereference a pointer.

1. int *a;//pointer to int

2. char *c;//pointer to char

 Initializing a pointer

To initialize the pointer variable &(Address Operator)is used.

int* p = &n;

 Accessing a Variable through its Pointer

 BCA 1st Sem (Programming In C)

121

#include <stdio.h>

int main()

{

 int *ptr, q;

 q = 50;

 /* address of q is assigned to ptr */

 ptr = &q;

 /* display q's value using ptr variable */

 printf("%d", *ptr);

 printf("%u", ptr);

 return 0;

}

Output

50

4104

Accessing a Variable without Pointer

#include <stdio.h>

int main()

{

 int q;

 q = 50;

 printf("%u",&q);

 return 0;

}

Output

50

4104

 Pointer and Arrays

 BCA 1st Sem (Programming In C)

122

When an array is declared, compiler allocates sufficient amount of memory to

contain all the elements of the array. Base address i.e address of the first element of

the array is also allocated by the compiler.

Suppose we declare an array arr,

int arr[5] = { 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two bytes,

the five elements will be stored as follows:

Here variable arr will give the base address, which is a constant pointer pointing to

the first element of the array, arr[0]. Hence arr contains the address

of arr[0] i.e 1000. In short, arr has two purpose - it is the name of the array and it

acts as a pointer pointing towards the first element in the array.

arr is equal to &arr[0] by default

We can also declare a pointer of type int to point to the array arr.

int *p;

p = arr;

// or,

p = &arr[0];

 Pointer to Array

As studied above, we can use a pointer to point to an array, and then we can use

that pointer to access the array elements. Let’s have an example,

#include <stdio.h>

int main()

{

 int i;

 int a[5] = {1, 2, 3, 4, 5};

 int *p = a; // same as int*p = &a[0]

 for (i = 0; i < 5; i++)

 {

 printf("%d \t", *p);

 printf("address is %u:\n", p);

 BCA 1st Sem (Programming In C)

123

 p++;

 }

 return 0;

}

Output

1 address is :1000

2 address is :1001

3 address is :1002

4 address is :1003

5 address is :1004

Topic-3:

File Handling: File Operations, Processing a Data File.

 Why files are needed?

 When a program is terminated, the entire data is lost. Storing in a file will

preserve your data even if the program terminates.

 If you have to enter a large number of data, it will take a lot of time to enter

them all.

However, if you have a file containing all the data, you can easily access the

contents of the file using few commands in C.

 You can easily move your data from one computer to another without any

changes.

 Types of Files

When dealing with files, there are two types of files you should know about:

1. Text files

2. Binary files

1. Text files

Text files are the normal .txt files that you can easily create using Notepad or any

simple text editors.

When you open those files, you'll see all the contents within the file as plain text.

You can easily edit or delete the contents.

They take minimum effort to maintain, are easily readable, and provide least

security and takes bigger storage space.

2. Binary files

 BCA 1st Sem (Programming In C)

124

Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold higher amount of data, are not readable easily and provides a better

security than text files.

 File Handling in C

In programming, we may require some specific input data to be generated several

numbers of times. Sometimes, it is not enough to only display the data on the

console. The data to be displayed may be very large, and only a limited amount of

data can be displayed on the console, and since the memory is volatile, it is

impossible to recover the programmatically generated data again and again.

However, if we need to do so, we may store it onto the local file system which is

volatile and can be accessed every time. Here, comes the need of file handling in

C.

File handling in C enables us to create, update, read, and delete the files stored on

the local file system through our C program. The following operations can be

performed on a file.

o Creation of the new file

o Opening an existing file

o Reading from the file

o Writing to the file

o Deleting the file

 File Operations

Mode Description

r opens a text file in read mode

w opens a text file in write mode

a opens a text file in append mode

r+ opens a text file in read and write mode

w+ opens a text file in read and write mode

a+ opens a text file in read and write mode

 BCA 1st Sem (Programming In C)

125

 Functions for file handling/ Processing a data file

There are many functions in the C library to open, read, write, search and close the

file. A list of file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the

file

5 fgetc() reads a character from file

6 fclose() closes the file

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the

beginning of the file

1)Opening File: fopen()

We must open a file before it can be read, write, or update. The fopen() function is

used to open a file.

The syntax of the fopen() is given below.

1. FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

o The file name (string). If the file is stored at some specific location, then we

must mention the path at which the file is stored. For example, a file name

can be like "c://some_folder/some_file.ext".

o The mode in which the file is to be opened. It is a string.

 BCA 1st Sem (Programming In C)

126

We can use one of the following modes in the fopen() function.

Mode Description

r opens a text file in read mode

w opens a text file in write mode

a opens a text file in append mode

r+ opens a text file in read and write mode

w+ opens a text file in read and write mode

a+ opens a text file in read and write mode

The fopen function works in the following way.

o Firstly, It searches the file to be opened.

o Then, it loads the file from the disk and place it into the buffer. The buffer is

used to provide efficiency for the read operations.

o It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.

#include<stdio.h>

void main()

{

FILE *fp ;

char ch ;

fp = fopen("file_handle.c","r") ;

while (1)

{

ch = fgetc (fp) ;

if (ch == EOF)

break ;

printf("%c",ch) ;

}

fclose (fp) ;

}

Output

The content of the file will be printed.

#include;

void main()

 BCA 1st Sem (Programming In C)

127

{

FILE *fp; // file pointer

char ch;

fp = fopen("file_handle.c","r");

while (1)

{

ch = fgetc (fp); //Each character of the file is read and stored in the character file.

if (ch == EOF)

break;

printf("%c",ch);

}

fclose (fp);

}

2)Closing File: fclose()

The fclose() function is used to close a file. The file must be closed after

performing all the operations on it.

The syntax of fclose() function is given below:

1. int fclose(FILE *fp);

3)fprintf():The fprintf() function is used to write set of characters into file. It sends

formatted output to a stream.

Syntax:
1. int fprintf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main()

{

 FILE *fp;

 fp = fopen("file.txt", "w");//opening file

 fprintf(fp, "Hello file by fprintf...\n");//writing data into file

 fclose(fp);//closing file

}

4)fscanf():The fscanf() function is used to read set of characters from file. It reads

a word from the file and returns EOF at the end of file.

Syntax:

 BCA 1st Sem (Programming In C)

128

1. int fscanf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main()

{

 FILE *fp;

 char buff[255];//creating char array to store data of file

 fp = fopen("file.txt", "r");

 while(fscanf(fp, "%s", buff)!=EOF){

 printf("%s ", buff);

 }

 fclose(fp);

}

Output:

Hello file by fprintf...

5)fgetc():fgetc() is used to obtain input from a file single character at a time. This

function returns the number of characters read by the function. It returns the

character present at position indicated by file pointer.

Syntax:

int fgetc(FILE *pointer)

pointer: pointer to a FILE object that identifies

the stream on which the operation is to be performed.

// C program to illustate fgetc() function

#include <stdio.h>

int main ()

{

 // open the file

 FILE *fp = fopen("test.txt","r");

 // Return if could not open file

 if (fp == NULL)

 return 0;

 do

 {

 // Taking input single character at a time

 char c = fgetc(fp);

 BCA 1st Sem (Programming In C)

129

 // Checking for end of file

 if (feof(fp))

 break ;

 printf("%c", c);

 } while(1);

 fclose(fp);

 return(0);

}

Output:

The entire content of file is printed character by

character till end of file. It reads newline character

as well.

5)fputc():fputc() is used to write a single character at a time to a given file. It

writes the given character at the position denoted by the file pointer and then

advances the file pointer.

This function returns the character that is written in case of successful write

operation else in case of error EOF is returned.

Syntax:

int fputc(int char, FILE *pointer)

char: character to be written.

This is passed as its int promotion.

pointer: pointer to a FILE object that identifies the

stream where the character is to be written.

Example:

#include <stdio.h>

 BCA 1st Sem (Programming In C)

130

int main () {

 FILE *fp;

 int ch;

fp = fopen("file.txt", "w+");

 for(ch = 33 ; ch <= 100; ch++)

{

 fputc(ch, fp);

 }

 fclose(fp);

 return(0);

}

	1) Binary Number System
	2) Octal number system
	3) Decimal number system
	 Algorithm in Programming
	Qualities of a good algorithm
	 What is a Character set?
	 Token
	 Keywords and Identifiers
	 What is a Variable?
	Global variables
	I. Integer constants
	II. Character constants
	III. String constants
	IV. Real Constants

	The syntax of Symbolic Constants in C

	 Expressions
	 Data types
	1. Integer data type
	2. Floating point data type
	3. Character data type
	4. Void data type

	 C Operators
	I. C Arithmetic Operators
	Example 1: Arithmetic Operators
	II. C Relational Operators
	Example 4: Relational Operators
	III. C Logical Operators
	Example 5: Logical Operators
	IV. C Bitwise Operators

	V. Other Operators
	 Comma Operator
	 The sizeof operator
	Example 6: sizeof Operator

	 C Increment and Decrement Operators
	Example 2: Increment and Decrement Operators

	 C Assignment Operators
	Example 3: Assignment Operators
	Syntax of a conditional operator

	Initialization of 2D Array
	 Functions for file handling/ Processing a data file

