
BCA 3rd Sem (Data Structure)

1

 Syllabus Of Data Structure

Detailed Contents

Unit -I

Introduction to Data Structures:

Algorithms and Flowcharts, Basics Analysis on Algorithm, Complexity of Algorithm,

Introduction and Definition of Data Structure, Classification of Data, Arrays, Various

types of Data Structure, Static and Dynamic Memory Allocation, Function,

Recursion.

 Arrays, Pointers and Strings:

Introduction to Arrays, Definition, One Dimensional Array and Multidimensional

Arrays, Pointer, Pointer to Structure, various Programs for Array and Pointer. Strings.

Introduction to Strings, Definition, Library Functions of Strings.
Unit-II

 Stacks and Queue :-
Introduction to Stack, Definition, Stack Implementation, Operations of Stack,

Applications of Stack and Multiple Stacks. Implementation of Multiple Stack Queues,

Introduction to Queue, Definition, Queue Implementation, Operations of Queue,

Circular Queue, De-queue and Priority Queue.
Unit-III

Linked Lists and Trees

Introduction, Representation and Operations of Linked Lists, Singly Linked List,

Doubly Linked List, Circular Linked List, And Circular Doubly Linked List.

 Trees

 Introduction to Tree, Tree Terminology Binary Tree, Binary Search Tree, Strictly

Binary Tree, Complete Binary Tree, Tree Traversal, Threaded Binary Tree, AVL

Tree B Tree, B+ Tree.
Unit -IV

Graphs, Searching, Sorting and Hashing Graphs:

Introduction, Representation to Graphs, Graph Traversals Shortest Path Algorithms.

Searching and Sorting:

Searching, Types of Searching, Sorting, Types of sorting like quick sort, bubble sort,

merge sort, selection sort.

Hashing:

Hash Function, Types of Hash Functions, Collision, Collision Resolution Technique

(CRT), Perfect Hashing

BCA 3rd Sem (Data Structure)

2

 INDEX

S.No Contents Page No

1

Introduction to Data Structures

5-30

2

Arrays, Pointers and Strings:

30-36

3

Stacks and Queue

38-81

4

Linked Lists and Trees

83-102

5

Trees

102-142

6

Graphs, Searching, Sorting and Hashing Graphs

144-160

7

Searching and Sorting

160-171

8

Hashing

171-179

BCA 3rd Sem (Data Structure)

3

 UNIT I

BCA 3rd Sem (Data Structure)

4

 Introduction to Data Structures

Basicconceptofdata

Data

Data is a raw and unorganized fact that required to be processed to make it

meaningful. Data can be simple at the same time unorganized unless it is

organized. Generally, data comprises facts, observations, perceptions numbers,

characters, symbols, image, etc. Data is always interpreted, by a human or

machine, to derive meaning. So, data is meaningless. Data contains numbers,

statements, and characters in a raw form.

Examples of data are weights, prices, costs, numbers of items sold, employee

names, product names, addresses, tax codes, registration marks etc

Information

Information is a set of data which is processed in a meaningful way according to

the given requirement. Information is processed, structured, or presented in a given

context to make it meaningful and useful.

It is processed data which includes data that possess context, relevance, and

purpose. It also involves manipulation of raw data.

Information assigns meaning and improves the reliability of the data. It helps to

ensure undesirability and reduces uncertainty. So, when the data is transformed

into information, it never has any useless details.

Example :- Information is data that has been converted into a more useful or

intelligible form.

BCA 3rd Sem (Data Structure)

5

Difference between Data and Information

Data Information

Data is in the form of numbers, letters,

or a set of characters.

Ideas and inferences

It can be structured, tabular data, graph,

data tree, etc.

Language, ideas, and thoughts based on

the given data.

Data does not have any specific

purpose.

It carries meaning that has been

assigned by interpreting data.

Data that is collected Information that is processed.

Data is a single unit and is raw. It alone

doesn't have any meaning.

Information is the product and group of

data which jointly carry a logical

meaning.

It never depends on Information It depended on Data.

Measured in bits and bytes. Measured in meaningful units like time,

quantity, etc.

It can't be used for decision making

It is widely used for decision making.

It is low-level knowledge. It is the second level of knowledge.

Data depends upon the sources for

collecting data.

Information depends upon data.

 Problem Analysis

BCA 3rd Sem (Data Structure)

6

Problem Analysis: Identify the issues. Be clear about what the problem is. ...

Understand everyone's interests. ...

List the possible solutions (options) ...

Evaluate the options.

Select an option or options. ...

Document the agreement(s). ...

Agree on contingencies, monitoring, and evaluation.

Algorithm Development

An algorithm in general is a sequence of steps to solve a particular problem.

Algorithms are universal. The algorithm you use in C programming language is

also the same algorithm you use in every other language. An algorithm produces

the same output information given the same input information, and several short

BCA 3rd Sem (Data Structure)

7

algorithms can be combined to perform complex tasks such as writing a computer

program.

Flow Chart

A flowchart is a formalized graphic representation of a logic sequence, work or

manufacturing process, organization chart, or similar formalized structure. The

purpose of a flow chart is to provide people with a common language or reference

point when dealing with a project or process. Flowcharts use simple geometric

symbols and arrows to define relationships.

Program Coding

A Programming (or coding) language is a set of syntax rules that define how code

should be written and formatted. Thousands of different programming languages

make it possible for us to create computer software, apps and websites.

Compile and Execution

Compilation

First, the source ‘.java’ file is passed through the compiler, which then encodes the

source code into a machine independent encoding, known as Bytecode. The

content of each class contained in the source file is stored in a separate ‘.class’ file.

While converting the source code into the bytecode.

Execution

The class files generated by the compiler are independent of the machine or the

OS, which allows them to be run on any system. To run, the main class file (the

class that contains the method main) is passed to the JVM, and then goes through

three main stages before the final machine code is executed.

Debugging and testing

Testing means verifying correct behavior. Testing can be done at all stages of

module development: requirements analysis, interface design, algorithm design,

implementation, and integration with other modules. In the following, attention

BCA 3rd Sem (Data Structure)

8

will be directed at implementation testing. Implementation testing is not restricted

to execution testing. An implementation can also be tested using correctness

proofs, code tracing, and peer reviews, as described below.

Debugging is a cyclic activity involving execution testing and code correction. The

testing that is done during debugging has a different aim than final module testing.

Final module testing aims to demonstrate correctness, whereas testing during

debugging is primarily aimed at locating errors. This difference has a significant

effect on the choice of testing strategies.

Documentation

The documentation section contains a set of comment including the name of the

program other necessary details. Comments are ignored by compiler and are used

to provide documentation to people who reads that code.

 Algorithm

An algorithm is defined as a step-by-step procedure or method for solving a

problem by a computer in a finite number of steps. Steps of an algorithm definition

may include branching or repetition depending upon what problem the algorithm is

being developed for. While defining an algorithm steps are written in human

understandable language and independent of any programming language. We can

implement it in any programming language of our choice.

Besides merely being a finite set of rules which gives a sequence of operations for

solving a specific type of problem, a well defined algorithm has five important

Features:

Finiteness. An algorithm must always terminate after a finite number of steps.

Definiteness. Each step of an algorithm must be precisely defined; the actions to

be carried out must be rigorously and unambiguously specified for each case.

Input. An algorithm has zero or more inputs, i.e, quantities which are given to it

initially before the algorithm begins.

BCA 3rd Sem (Data Structure)

9

Output. An algorithm has one or more outputs i.e, quantities which have a

specified relation to the inputs.

Effectiveness. An algorithm is also generally expected to be effective. This means

that all of the operations to be performed in the algorithm must be sufficiently

basic that they can in principle be done exactly and in a finite length of time.

Characteristics of an Algorithm

An algorithm must follow the mentioned below characteristics:

Input: An algorithm must have 0 or well defined inputs.

Output: An algorithm must have 1 or well defined outputs, and should match with

the desired output.

Feasibility: An algorithm must be terminated after the finite number of steps.

Independent: An algorithm must have step-by-step directions which is

independent of any programming code.

Unambiguous: An algorithm must be unambiguous and clear. Each of their steps

and input/outputs must be clear and lead to only one meaning.

Qualities of a good algorithm

Input and output should be defined precisely.

Each steps in algorithm should be clear and unambiguous.

Algorithm should be most effective among many different ways to solve a

problem.

An algorithm shouldn't have computer code. Instead, the algorithm should be

written in such a way that, it can be used in similar programming languages.

Write an algorithm to add two numbers entered by user.

Step 1: Start

BCA 3rd Sem (Data Structure)

10

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

Write an algorithm to find the largest among three different numbers entered

by user.

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a>b

 If a>c

 Display a is the largest number.

 Else

 Display c is the largest number.

 Else

 If b>c

 Display b is the largest number.

 Else

 Display c is the greatest number.

 Step 5: Stop

BCA 3rd Sem (Data Structure)

11

Advantages of Algorithms:

 It is a step-wise representation of a solution to a given problem, which

makes it easy to understand.

 An algorithm uses a definite procedure.

 It is not dependent on any programming language, so it is easy to understand

for anyone even without programming knowledge.

 Every step in an algorithm has its own logical sequence so it is easy to

debug.

 By using algorithm, the problem is broken down into smaller pieces or steps

hence, it is easier for programmer to convert it into an actual program.

Disadvantages of Algorithms:

 Alogorithms is Time consuming.

 Difficult to show Branching and Looping in Algorithms.

 Big tasks are difficult to put in Algorithms.

 Big O

For any monotonic functions f(n) and g(n) from the positive integers to the positive

integers, we say that f(n) = O(g(n)) when there exist constants c > 0 and n0 > 0

such that

f(n) ≤ c * g(n), for all n ≥ n0

Intuitively, this means that function f(n) does not grow faster than g(n), or that

function g(n) is an upper bound for f(n), for all sufficiently large n→∞

Here is a graphic representation of f(n) = O(g(n)) relation:

BCA 3rd Sem (Data Structure)

12

Examples:

1 = O(n)

n = O(n2)

log(n) = O(n)

Constant Time: O(1)

An algorithm is said to run in constant time if it requires the same amount of time

regardless of the input size. Examples:

array: accessing any element

fixed-size stack: push and pop methods

fixed-size queue: enqueue and dequeue methods

Linear Time: O(n)

An algorithm is said to run in linear time if its time execution is directly

proportional to the input size, i.e. time grows linearly as input size increases.

Examples:

array: linear search, traversing, find minimum

ArrayList: contains method

queue: contains method

BCA 3rd Sem (Data Structure)

13

Logarithmic Time: O(log n)

An algorithm is said to run in logarithmic time if its time execution is proportional

to the logarithm of the input size. Example:

Binary Search

Recall the "twenty questions" game - the task is to guess the value of a hidden

number in an interval. Each time you make a guess, you are told whether your

guess iss too high or too low. Twenty questions game imploies a strategy that uses

your guess number to halve the interval size. This is an example of the general

problem-solving method known as binary search:

locate the element a in a sorted (in ascending order) array by first comparing a with

the middle element and then (if they are not equal) dividing the array into two

subarrays; if a is less than the middle element you repeat the whole procedure in

the left subarray, otherwise - in the right subarray. The procedure repeats until a is

found or subarray is a zero dimension.

Note, log(n) < n, when n→∞. Algorithms that run in O(log n) does not use the

whole input.

 Flowchart

Flowchart is a diagrammatic representation of sequence of logical steps of a

program. Flowcharts use simple geometric shapes to depict processes and arrows

to show relationships and process/data flow.

Flowchart Symbols

Here is a chart for some of the common symbols used in drawing flowcharts.

Symbol Symbol Name Purpose

Start/Stop Used at the beginning and end of the

algorithm to show start and end of the

BCA 3rd Sem (Data Structure)

14

program.

Process
Indicates processes like mathematical

operations.

Input/ Output
Used for denoting program inputs and

outputs.

Decision

Stands for decision statements in a program,

where answer is usually Yes or No.

Arrow
Shows relationships between different

shapes.

On-page Connector

Connects two or more parts of a flowchart,

which are on the same page.

Off-page Connector

Connects two parts of a flowchart which are

spread over different pages.

Guidelines for Developing Flowcharts

These are some points to keep in mind while developing a flowchart −

Flowchart can have only one start and one stop symbol

On-page connectors are referenced using numbers

Off-page connectors are referenced using alphabets

BCA 3rd Sem (Data Structure)

15

General flow of processes is top to bottom or left to right

Arrows should not cross each other

Example Flowcharts

Here is the flowchart for going to the market to purchase a pen.

Here is a flowchart to calculate the average of two numbers.

BCA 3rd Sem (Data Structure)

16

 Analysis of Algorithms

The term analysis of algorithms is used to describe approaches to the study of the

performance of algorithms. In this course we will perform the following types of

analysis:

the worst-case runtime complexity of the algorithm is the function defined by the

maximum number of steps taken on any instance of size a.

the best-case runtime complexity of the algorithm is the function defined by the

minimum number of steps taken on any instance of size a.

the average case runtime complexity of the algorithm is the function defined by an

average number of steps taken on any instance of size a.

the amortized runtime complexity of the algorithm is the function defined by a

sequence of operations applied to the input of size a and averaged over time.

Example. Let us consider an algorithm of sequential searching in an array.of size

n.

Its worst-case runtime complexity is O(n)

Its best-case runtime complexity is O(1)

Its average case runtime complexity is O(n/2)=O(n)

Algorithm Complexity

Algorithm Complexity are two types

1) Time complexity of an algorithm signifies the total time required by the

program to run till its completion.

The time complexity of algorithms is most commonly expressed using the big O

notation. It's an asymptotic notation to represent the time complexity.

Time Complexity is most commonly estimated by counting the number of

elementary steps performed by any algorithm to finish execution.

Three cases are consider while calculating Time complexity

BCA 3rd Sem (Data Structure)

17

Worst case: An algorithm takes more time to execution is called the worst case, it

is mostly in cases of loops where execution time is depends upon the number of

input size.

Average case: An algorithm takes time between the best and worst case to

execution is called the Average case.

Best case: An algorithm takes expected to execution is called the best case.

2) Space Complexity of Algorithms

Whenever a solution to a problem is written some memory is required to complete.

For any algorithm memory may be used for the following:

Variables (This include the constant values, temporary values)

Program Instruction

Execution

Space complexity is the amount of memory used by the algorithm (including the

input values to the algorithm) to execute and produce the result.

Sometime Auxiliary Space is confused with Space Complexity. But Auxiliary

Space is the extra space or the temporary space used by the algorithm during it's

execution.

Space Complexity = Auxiliary Space + Input space

Memory Usage while Execution

While executing, algorithm uses memory space for three reasons:

Instruction Space

It's the amount of memory used to save the compiled version of instructions.

Environmental Stack

Sometimes an algorithm(function) may be called inside another

algorithm(function). In such a situation, the current variables are pushed onto the

BCA 3rd Sem (Data Structure)

18

system stack, where they wait for further execution and then the call to the inside

algorithm(function) is made.

For example, If a function A() calls function B() inside it, then all th variables of

the function A() will get stored on the system stack temporarily, while the

function B() is called and executed inside the function A().

Data Space

Amount of space used by the variables and constants.

Calculating the Space Complexity

For calculating the space complexity, we need to know the value of memory used

by different type of data type variables, which generally varies for different

operating systems, but the method for calculating the space complexity remains the

same.

Type Size

bool, char, unsigned char, signed char, __int8 1 byte

__int16, short, unsigned short, wchar_t, __wchar_t 2 bytes

float, __int32, int, unsigned int, long, unsigned long 4 bytes

double, __int64, long double, long long 8 bytes

 Data Structure and Types

Data Structure can be defined as the group of data elements which provides an

efficient way of storing and organizing data in the computer so that it can be used

efficiently. Some examples of Data Structures are arrays, Linked List, Stack,

Queue, etc. Data Structures are widely used in almost every aspect of Computer

BCA 3rd Sem (Data Structure)

19

Science i.e. Operating System, Compiler Design, Artifical intelligence, Graphics

and many more.

Data Structures are the main part of many computer science algorithms as they

enable the programmers to handle the data in an efficient way. It plays a vitle role

in enhancing the performance of a software or a program as the main function of

the software is to store and retrieve the user's data as fast as possible

Basic Terminology

Data structures are the building blocks of any program or the software. Choosing

the appropriate data structure for a program is the most difficult task for a

programmer. Following terminology is used as far as data structures are concerned

Data: Data can be defined as an elementary value or the collection of values, for

example, student's name and its id are the data about the student.

Group Items: Data items which have subordinate data items are called Group

item, for example, name of a student can have first name and the last name.

Record: Record can be defined as the collection of various data items, for

example, if we talk about the student entity, then its name, address, course and

marks can be grouped together to form the record for the student.

File: A File is a collection of various records of one type of entity, for example, if

there are 60 employees in the class, then there will be 20 records in the related file

where each record contains the data about each employee.

Attribute and Entity: An entity represents the class of certain objects. it contains

various attributes. Each attribute represents the particular property of that entity.

Field: Field is a single elementary unit of information representing the attribute of

an entity.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures.

For example: suppose, we have some data and we need to perform the search for a

perticular record. In that case, if we organize our data in an array, we will have to

search sequentially element by element. hence, using array may not be very

BCA 3rd Sem (Data Structure)

20

efficient here. There are better data structures which can make the search process

efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a

particular data structure, we can use it at any other place. Implementation of data

structures can be compiled into libraries which can be used by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of

abstraction. The client program uses the data structure through interface only,

without getting into the implementation details.

Characteristics of data structures

Data structures are often classified by their characteristics. Possible characteristics

are:

Linear or non-linear: This characteristic describes whether the data items are

arranged in chronological sequence, such as with an array, or in an unordered

sequence, such as with a graph.

Homogeneous or non-homogeneous: This characteristic describes whether all

data items in a given repository are of the same type or of various types.

Static or dynamic: This characteristic describes how the data structures are

compiled. Static data structures have fixed sizes, structures and memory locations

at compile time. Dynamic data structures have sizes, structures and memory

locations that can shrink or expand depending on the use.

 A DEFINITION OF DATA CLASSIFICATION

Data classification is broadly defined as the process of organizing data by relevant

categories so that it may be used and protected more efficiently. On a basic level,

the classification process makes data easier to locate and retrieve. Data

classification is of particular importance when it comes to risk management,

compliance, and data security.

https://digitalguardian.com/products/data-classification
https://www.cmu.edu/iso/governance/guidelines/data-classification.html

BCA 3rd Sem (Data Structure)

21

Data classification involves tagging data to make it easily searchable and traceable.

It also eliminates multiple duplications of data, which can reduce storage and

backup costs while speeding up the search process. Though the classification

process may sound highly technical, it is a topic that should be understood by your

organization’s leadership.

REASONS FOR DATA CLASSIFICATION

Data classification has improved significantly over time. Today, the technology is

used for a variety of purposes, often in support of data security initiatives. But data

may be classified for a number of reasons, including ease of access, maintaining

regulatory compliance and to meet various other business or personal objectives.

In some cases, data classification is a regulatory requirement, as data must be

searchable and retrievable within specified timeframes. For the purposes of data

security, data classification is a useful tactic that facilitates proper security

responses based on the type of data being retrieved, transmitted, or copied.

 TYPES OF DATA CLASSIFICATION

Data classification often involves a multitude of tags and labels that define the type

of data, its confidentiality, and its integrity. Availability may also be taken into

consideration in data classification processes. Data’s level of sensitivity is often

classified based on varying levels of importance or confidentiality, which then

correlates to the security measures put in place to protect each classification level.

There are three main types of data classification that are considered industry

standards:

Content-based classification inspects and interprets files looking for sensitive

information

Context-based classification looks at application, location, or creator among other

variables as indirect indicators of sensitive information

https://www.forbes.com/sites/forbestechcouncil/2018/08/13/every-executive-needs-to-understand-data-classification-strategy/#16c4740e5769
https://www.forbes.com/sites/forbestechcouncil/2018/08/13/every-executive-needs-to-understand-data-classification-strategy/#16c4740e5769
https://digitalguardian.com/solutions/compliance
https://digitalguardian.com/solutions/compliance
https://digitalguardian.com/blog/how-should-you-classify-your-data-guide-using-context-content-and-user-based-data-classification

BCA 3rd Sem (Data Structure)

22

User-based classification depends on a manual, end-user selection of each

document. User-based classification relies on user knowledge and discretion at

creation, edit, review, or dissemination to flag sensitive documents.

Content-, context-, and user-based approaches can be both right or wrong

depending on the business need and data type.

 Types of data structures

Arrays- An array stores a collection of items at adjoining memory locations. Items

that are the same type get stored together so that the position of each element can

be calculated or retrieved easily. Arrays can be fixed or flexible in length.

Example

Stacks- A stack stores a collection of items in the linear order that operations are

applied. This order could be last in first out (LIFO).For example Stack of coins,

stack of plates ,stack of books.

Mainly the following three basic operations are performed in the stack:

https://whatis.techtarget.com/definition/stack

BCA 3rd Sem (Data Structure)

23

Push: Adds an item in the stack. If the stack is full, then it is said to be an

Overflow condition.

Pop: Removes an item from the stack. The items are popped in the reversed order

in which they are pushed. If the stack is empty, then it is said to be an Underflow

condition.

Peek or Top: Returns top element of stack.

Empty: Returns true if stack is empty, else false.

Queues- A queue stores a collection of items similar to a stack; however, the

operation order can only be first in first out.

Operations on Queue:

Mainly the following four basic operations are performed on queue:

Enqueue: Adds an item to the queue. If the queue is full, then it is said to be an

Overflow condition.

Dequeue: Removes an item from the queue. The items are popped in the same

order in which they are pushed. If the queue is empty, then it is said to be an

Underflow condition.

Front: Get the front item from queue.

Rear: Get the last item from queue.

https://whatis.techtarget.com/definition/queue

BCA 3rd Sem (Data Structure)

24

Linked lists- A linked list stores a collection of items in a linear order. Each

element, or node, in a linked list contains a data item as well as a reference, or link,

to the next item in the list.

Basic Operations.

 Insertion Operation.

 Deletion Operation.

 Reverse Operation.

Trees- A tree stores a collection of items in an abstract, hierarchical way. Each

node is linked to other nodes and can have multiple sub-values, also known as

children.

Graphs- A graph stores a collection of items in a non-linear fashion. Graphs are

made up of a finite set of nodes, also known as vertices, and lines that connect

BCA 3rd Sem (Data Structure)

25

them, also known as edges. These are useful for representing real-life systems such

as computer networks

Blocks :- In computing (specifically data transmission and data storage), a block,

sometimes called a physical record, is a sequence of bytes or bits, usually

containing some whole number of records, having a maximum length, a block size.

Data thus structured are said to be blocked.

The process of putting data into blocks is called blocking.

 deblocking is the process of extracting data from blocks.

The sector is the minimum storage unit of a hard drive. Most disk partitioning

schemes are designed to have files occupy an integral number of sectors regardless

of the file's actual size. The sector means a portion of a disk between a center,

two radii and a corresponding arc (see Figure 1, item B), which is shaped like a

slice of a pie. Thus, the disk sector refers to the intersection of a track and

geometrical sector.

https://en.wikipedia.org/wiki/Disk_(mathematics)
https://en.wikipedia.org/wiki/Arc_(geometry)

BCA 3rd Sem (Data Structure)

26

Tracks and Spots

A disk's surface is divided into concentric tracks (circles within circles), and the

thinner the tracks, the more storage. The data bits are recorded as magnetic spots

on the tracks, and the smaller the spot, the greater the storage.

 What is static memory allocation and dynamic memory allocation?

Static Memory Allocation: Memory is allocated for the declared variable by the

compiler. The address can be obtained by using ‘address of’ operator and can be

assigned to a pointer. The memory is allocated during compile time. Since most of

the declared variables have static memory, this kind of assigning the address of a

variable to a pointer is known as static memory allocation.

Dynamic Memory Allocation: Allocation of memory at the time of execution (run

time) is known as dynamic memory allocation. The functions calloc() and malloc()

support allocating of dynamic memory. Dynamic allocation of memory space is

done by using these functions when value is returned by functions and assigned to

pointer variables.

Reasons and Advantage of allocating memory dynamically:

BCA 3rd Sem (Data Structure)

27

When we do not know how much amount of memory would be needed for the

program beforehand.

When we want data structures without any upper limit of memory space.

When you want to use your memory space more efficiently. Example: If you have

allocated memory space for a 1D array as array[20] and you end up using only 10

memory spaces then the remaining 10 memory spaces would be wasted and this

wasted memory cannot even be utilized by other program variables.

Dynamically created lists insertions and deletions can be done very easily just by

the manipulation of addresses whereas in case of statically allocated memory

insertions and deletions lead to more movements and wastage of memory.

When you want you to use the concept of structures and linked list in

programming, dynamic memory allocation is a must.

 What is recursion?

In simple words, recursion is a problem solving, and in some cases, a programming

technique that has a very special and exclusive property. In recursion, a function or

method has the ability of calling itself to solve the problem. The process of

recursion involves solving a problem by turning it into smaller varieties of itself.

The process in which a function calls itself could happen directly as well as

indirectly. This difference in call gives rise to different types of recursion, which

we will talk about a little later. Some of the problems that can be solved using

recursion include DFS of Graph, Towers of Hanoi, Different Types of Tree

Traversals, and others.

Examples of Recursion

 Factorial of a positive integer

 Fibonacci series

BCA 3rd Sem (Data Structure)

28

 Greatest common divisor

 Tower of Hanoi

1. Factorial of a positive integer:- Factorial is a mathematical term. Factorial of a

number,say n, is equal to the product of all integers from 1 to n. Factorial of n is

dentoed

By

 n! = 1*2*3…..*n.

2. Fibonacci series:- Another well known mathematical recursive function is one

that computers the fiboncci numbers.

Greatest common divisor:- In mathematics, the greatest common divisor (gcd) of

two or more integers, which are not all zero, is the largest positive integer that

divides each of the integers. For example, the gcd of 8 and 12 is 4.

Tower of Hanoi:-

The Tower of Hanoi (also called the Tower of Brahma or Lucas' Tower[1] and

sometimes pluralized as Towers) is a mathematical game or puzzle. It consists of

three rods and a number of disks of different sizes, which can slide onto any rod.

The puzzle starts with the disks in a neat stack in ascending order of size on one

rod, the smallest at the top, thus making a conical shape.

https://en.wikipedia.org/wiki/Tower_of_Hanoi#cite_note-1
https://en.wikipedia.org/wiki/Mathematical_game
https://en.wikipedia.org/wiki/Puzzle
https://en.wikipedia.org/wiki/Cone

BCA 3rd Sem (Data Structure)

29

The objective of the puzzle is to move the entire stack to another rod, obeying the

following simple rules:

Only one disk can be moved at a time.

Each move consists of taking the upper disk from one of the stacks and placing it

on top of another stack or on an empty rod.

No larger disk may be placed on top of a smaller disk.

 Array

Definition

Arrays are defined as the collection of similar type of data items stored at

contiguous memory locations.

Arrays are the derived data type in C programming language which can store the

primitive type of data such as int, char, double, float, etc.

Array is the simplest data structure where each data element can be randomly

accessed by using its index number.

BCA 3rd Sem (Data Structure)

30

Advantages of Array

Array provides the single name for the group of variables of the same type

therefore, it is easy to remember the name of all the elements of an array.

Traversing an array is a very simple process, we just need to increment the base

address of the array in order to visit each element one by one.

Any element in the array can be directly accessed by using the index.

There are two types of Arrays

 One Dimensional Arrays

 Two Dimensional Arrays

One Dimensional Arrays

A one-dimensional array is one in which only one subscript specification is needed

to specify a particular element of the array.

A one-dimensional array is a list of related variables. Such lists are common in

programming.

One-dimensional array can be declared as follows :

 Data_type var_name[Expression];

Initializing One-Dimensional Array

ANSI C allows automatic array variables to be initialized in declaration by

constant initializers as we have seen we can do for scalar variables.

BCA 3rd Sem (Data Structure)

31

These initializing expressions must be constant value; expressions with identifiers

or function calls may not be used in the initializers.

The initializers are specified within braces and separated by commas.

 int ex[5] = { 10, 5, 15, 20, 25} ;

 char word[10] = { 'h', 'e', 'l', 'l', 'o' } ;

Two Dimensional Array

Two dimensional arrays are also called table or matrix, two dimensional arrays

have two subscripts.

Two dimensional array inwhich elements are stored column by column is called as

column major matrix.

Two dimensional array in which elements are stored row by row is called as row

majo rmatrix.

First subscript denotes number of rows and second subscript denotes the number of

columns.

The simplest form of the Multi Dimensionl Array is the Two Dimensionl Array.

A Multi Dimensionl Array is essence a list of One Dimensionl Arrays.

Two dimensional arrays can be declared as follows :

 int int_array[10] ; // A normal one dimensional array

 int int_array2d[10][10] ; // A two dimensional array

 Pointer

Pointer is used to points the address of the value stored anywhere in the computer

memory. To obtain the value stored at the location is known as dereferencing the

pointer. Pointer improves the performance for repetitive process such as:

 Traversing String

 Lookup Tables

 Control Tables

BCA 3rd Sem (Data Structure)

32

 Tree Structures

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case

you do not have an exact address to be assigned. This is done at the time of

variable declaration. A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard

libraries. Consider the following program −

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

 return 0;

}

BCA 3rd Sem (Data Structure)

33

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

Pointer Details

Pointer arithmetic: There are four arithmetic operators that can be used in

pointers: ++, --, +, -

Array of pointers: You can define arrays to hold a number of pointers.

Pointer to pointer: C allows you to have pointer on a pointer and so on.

Passing pointers to functions in C: Passing an argument by reference or by

address enable the passed argument to be changed in the calling function by the

called function.

Return pointer from functions in C: C allows a function to return a pointer to the

local variable, static variable and dynamically allocated memory as well.

 Pointer to structure.

#include<stdio.h>

struct dog

{

 char name[10];

 char breed[10];

 int age;

 char color[10];

};

int main()

BCA 3rd Sem (Data Structure)

34

{

 struct dog my_dog = {"tyke", "Bulldog", 5, "white"};

 struct dog *ptr_dog;

 ptr_dog = &my_dog;

 printf("Dog's name: %s\n", ptr_dog->name);

 printf("Dog's breed: %s\n", ptr_dog->breed);

 printf("Dog's age: %d\n", ptr_dog->age);

 printf("Dog's color: %s\n", ptr_dog->color);

 // changing the name of dog from tyke to jack

 strcpy(ptr_dog->name, "jack");

 // increasing age of dog by 1 year

 ptr_dog->age++;

 printf("Dog's new name is: %s\n", ptr_dog->name);

 printf("Dog's age is: %d\n", ptr_dog->age);

 // signal to operating system program ran fine

 return 0;

}

BCA 3rd Sem (Data Structure)

35

 String

Strings are defined as an array of characters. The difference between a character

array and a string is the string is terminated with a special character ‘\0’.

Declaring a string is as simple as declaring a one dimensional array. Below is the

basic syntax for declaring a string in C programming language.

char str_name[size];

 Library Functions of Strings

The nine most commonly used functions in the string library are:

strcat - concatenate two strings.

strchr - string scanning operation.

strcmp - compare two strings.

strcpy - copy a string.

strlen - get string length.

strncat - concatenate one string with part of another.

strncmp - compare parts of two strings

BCA 3rd Sem (Data Structure)

36

 UNIT –II

BCA 3rd Sem (Data Structure)

37

 Stack And Queue

1)Stacks: Stack is an abstract data type with a bounded(predefined) capacity. It is

a simple data structure that allows adding and removing elements in a particular

order. Every time an element is added, it goes on the top of the stack and the only

element that can be removed is the element that is at the top of the stack, just like a

Stack of coins, books etc.

Basic features of Stack

 Stack is an ordered list of similar data type.

 Stack is a LIFO (Last in First out) structure or we can say FILO (First in

Last out).

 push() function is used to insert new elements into the Stack

and pop() function is used to remove an element from the stack. Both

insertion and removal are allowed at only one end of Stack called Top.

 Stack is said to be in Overflow state when it is completely full and is said to

be in Underflow state if it is completely empty.

BCA 3rd Sem (Data Structure)

38

 Operations of Stack

Mainly the following three basic operations are performed in the stack:

Push: Adds an item in the stack. If the stack is full, then it is said to be an

Overflow condition.

Pop: Removes an item from the stack. The items are popped in the reversed order

in which they are pushed. If the stack is empty, then it is said to be an Underflow

condition.

Peek or Top: Returns top element of stack.

isEmpty: Returns true if stack is empty, else false.

Static Representation of Stack in Memory

There are two ways

 Array

 Linked List

Array (Static) Representation of Stack in Memory

Stacks may be represented in the computer in various ways, usually by means of a

one-way list or a linear array. Unless otherwise stated or implied, each of our

stacks will be maintained by a linear array STACK;a pointer variable TOP, which

contains the location of the top element of the stack; and a

variable MAXSTK which gives the maximum number of elements that can be held

by the stack. The condition TOP = 0 or TOP = NULL will indicate that the stack is

empty.

BCA 3rd Sem (Data Structure)

39

1)Push:

The first thing that needs to be performed is a push operation. The diagram shows

the changes to be made if the value 10 is pushed onto the stack:

After the push operation, the array holds the pushed value in the location that used

to be indexed by top, and top has now moved on to point to the next slot in the

array, ready for the next push. The next step is to perform a second push. The

second value to be pushed in this example is 20:

Before:

After:

BCA 3rd Sem (Data Structure)

40

Algorithm For Push Operation

Step 1 − Checks if the stack is full.

Step 2 − If the stack is full, produces an error and exit.

Step 3 − If the stack is not full, increments top to point next empty space.

Step 4 − Adds data element to the stack location, where top is pointing.

Step 5 − Returns success.

2)Pop Operation

Accessing the content while removing it from the stack, is known as a Pop

Operation. In an array implementation of pop() operation, the data element is not

actually removed, instead top is decremented to a lower position in the stack to

point to the next value. But in linked-list implementation, pop() actually removes

data element and deallocates memory space.

Before :

BCA 3rd Sem (Data Structure)

41

After:

Algorithm For Push Operation

Step 1 − Checks if the stack is empty.

Step 2 − If the stack is empty, produces an error and exit.

Step 3 − If the stack is not empty, accesses the data element at which top is

pointing.

Step 4 − Decreases the value of top by 1.

BCA 3rd Sem (Data Structure)

42

Step 5 − Returns success.

4)Peek or Top: get the top data element of the stack, without removing it

In this example it show top value=20

Algorithm of Peek operation

Step 1 − Checks if the stack is empty.

Step 2 − If the stack is empty, produces an error and exit.

Step 3 − If the stack is not empty, accesses the data element at which top is

pointing.

Step 4 − Returns success

Link List (Dynamic) Representation of Stack in Memory:

Instead of using array, we can also use linked list to implement stack. Linked list

allocates the memory dynamically. However, time complexity in both the scenario

is same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously

in the memory. Each node contains a pointer to its immediate successor node in the

BCA 3rd Sem (Data Structure)

43

stack. Stack is said to be overflow if the space left in the memory heap is not

enough to create a node.

Stack underflow happens when we try to pop (remove) an item from the stack,

when nothing is actually there to remove. This will raise an alarm of sorts in the

computer because we told it to do something that cannot be done.

Stack overflow happens when we try to push one more item onto our stack than it

can actually hold. You see, the stack usually can hold only so much stuff.

Typically, we allocate (set aside) where the stack is going to be in memory and

how big it can get. So, when we stick too much stuff there or try to remove

nothing, we will generate a stack overflow condition or stack underflow condition,

respectively.

1)Push:

Step1:[check for free space in memory]

 If AVAIL=NULL then

Write ”underflow” and Exit

BCA 3rd Sem (Data Structure)

44

Step2:[Allocate new memory from the Available memory]

 Set NEW:=AVAIL, AVAIL:=LINK[AVAIL]

Step3:Set INFO[NEW]:=ITEM[Assign the item to new node]

Step4:Set LINK[NEW]:=TOP

Step6:Exit

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to

a stack in linked list implementation is different from that of an array

implementation. In order to push an element onto the stack, the following steps are

involved.

Create a node first and allocate memory to it.

If the list is empty then the item is to be pushed as the start node of the list. This

includes assigning value to the data part of the node and assign null to the address

part of the node.

If there are some nodes in the list already, then we have to add the new element in

the beginning of the list (to not violate the property of the stack). For this purpose,

assign the address of the starting element to the address field of the new node and

make the new node, the starting node of the list.

BCA 3rd Sem (Data Structure)

45

1)Pop:

Step1:[check for Empty]

 If TOP=NULL then

Write ”Underflow” and Exit

Step2:[Remove the top most element and copy to item]

 Set ITEM:=INFO[TOP]

Step3:[Remember the old value of top and update top to next]

Set TEMP:=TOP,TOP:=LINK[TOP]

Step4:[Assign the deleted node to Avail]

Set LINK[TEMP]:=AVAIL , AVAIL:=TEMP

Step5:Exit

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a

node from the linked list implementation of stack is different from that in the array

implementation. In order to pop an element from the stack, we need to follow the

following steps :

Check for the underflow condition: The underflow condition occurs when we try

to pop from an already empty stack. The stack will be empty if the head pointer of

the list points to null.

Adjust the head pointer accordingly: In stack, the elements are popped only

from one end, therefore, the value stored in the head pointer must be deleted and

the node must be freed. The next node of the head node now becomes the head

node.

BCA 3rd Sem (Data Structure)

46

 Stack Applications:

Expression Evaluation

Stack is used to evaluate prefix, postfix and infix expressions.

Expression Conversion

An expression can be represented in prefix, postfix or infix notation. Stack can be

used to convert one form of expression to another.

Syntax Parsing

Many compilers use a stack for parsing the syntax of expressions, program blocks

etc. before translating into low level code.

Backtracking

Suppose we are finding a path for solving maze problem. We choose a path and

after following it we realize that it is wrong. Now we need to go back to the

beginning of the path to start with new path. This can be done with the help of

stack.

Parenthesis Checking

Stack is used to check the proper opening and closing of parenthesis.

String Reversal

Stack is used to reverse a string. We push the characters of string one by one into

stack and then pop character from stack.

Function Call

BCA 3rd Sem (Data Structure)

47

Stack is used to keep information about the active functions or subroutines.

 Multiple Stack

When a stack is created using single array, we cannot able to store large amount of

data, thus this problem is rectified using more than one stack in the same array of

sufficient array. This technique is called as Multiple Stack.

 Implement two stacks in an array (Multiple Stack)

Create a data structure two Stacks that represents two stacks. Implementation

of two Stacks should use only one array, i.e., both stacks should use the same array

for storing elements. Following functions must be supported by two Stacks.

push1 (int x) –> pushes x to first stack

push2 (int x) –> pushes x to second stack

pop1 () –> pops an element from first stack and return the popped element

pop2() –> pops an element from second stack and return the popped element

Implementation of two Stack should be space efficient.

Method 1 (Divide the space in two halves)

A simple way to implement two stacks is to divide the array in two halves and

assign the half half space to two stacks, i.e., use arr[0] to arr[n/2] for stack1, and

arr[(n/2) + 1] to arr[n-1] for stack2 where arr[] is the array to be used to implement

two stacks and size of array be n.

The problem with this method is inefficient use of array space. A stack push

operation may result in stack overflow even if there is space available in arr[]. For

example, say the array size is 6 and we push 3 elements to stack1 and do not push

anything to second stack2. When we push 4th element to stack1, there will be

overflow even if we have space for 3 more elements in array.

Complexity Analysis:

 Time Complexity:

 Push operation : O(1)

 Pop operation : O(1)

 Auxiliary Space: O(N).

Use of array to implement stack so. It is not the space-optimized method as

explained above.

BCA 3rd Sem (Data Structure)

48

Method 2 (A space efficient implementation)

This method efficiently utilizes the available space. It doesn’t cause an overflow if

there is space available in arr[]. The idea is to start two stacks from two extreme

corners of arr[]. stack1 starts from the leftmost element, the first element in stack1

is pushed at index 0. The stack2 starts from the rightmost corner, the first element

in stack2 is pushed at index (n-1). Both stacks grow (or shrink) in opposite

direction. To check for overflow, all we need to check is for space between top

elements of both stacks. This check is highlighted in the below code.

 Fig .- Multiple Stack

 Fig. Single Stack

BCA 3rd Sem (Data Structure)

49

 Recursion

The process in which a function calls itself directly or indirectly is called recursion

and the corresponding function is called as recursive function. Using recursive

algorithm, certain problems can be solved quite easily. Examples of such problems

are Towers of Hanoi ,Conversion from one notation to another notation

Example of

 Factorial of a positive number

 Fibonacci series

 Towers of Hanoi

1)Factorial of a positive number:

 This function returns n! (read n factorial) where n is an integer.

n!=n* n-1* n-2*....2*1 by definition 0! is 1

for example

if n==5, then n! would be 5! = 5*4*3*2*1=120

Algorithm

STEP 1:IF n=1 THEN

 Set f:=1

 ELSE

 Set f=n*factorial(n-1)

 [END IF]

Step2: Return F

Step 3:End

BCA 3rd Sem (Data Structure)

50

2)Fibonacci series

Fibonacci series is defined as a sequence of numbers in which the first two

numbers are 1 and 1, or 0 and 1, depending on the selected beginning point of the

sequence, and each subsequent number is the sum of the previous two.

First Term = 0

Second term = 1

Third Term = First + Second = 0+1 =1

Fourth term = Second + Third =1+1 = 2

Fifth Term = Third + Fourth = 2+1 = 3

Sixth Term= Fourth + Fifth = 3+2 = 5

Seventh Term = Fifth + Sixth = 3+5 = 8

Eighth Term = Sixth + Seventh = 5+8 = 13 … and so on to infinity!

Algorithm

STEP 1:IF n=0 THEN

 Set f:=0

ELSE IF n=1 then

 Set f:=1

 ELSE

BCA 3rd Sem (Data Structure)

51

 Set f=fib(n-1)+fib(n-2)

 [END IF]

Step2 :Return F

Step 3:End

3)Towers of Hanoi

 Tower of Hanoi is a mathematical puzzle with three rods and ‘n’ numbers of

discs.

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs)

and more than one rings is as depicted −

These rings are of different sizes and stacked upon in an ascending order, i.e. the

smaller one sits over the larger one. There are other variations of the puzzle where

the number of disks increase, but the tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the

sequence of arrangement. A few rules to be followed for Tower of Hanoi are −

Only one disk can be moved among the towers at any given time.

Only the "top" disk can be removed.

BCA 3rd Sem (Data Structure)

52

No large disk can sit over a small disk.

Algorithm :

The steps to follow are

Step 1 − Move n-1 disks from source to aux

Step 2 − Move nth disk from source to dest

Step 3 − Move n-1 disks from aux to dest

Step 1:

Step 2:

BCA 3rd Sem (Data Structure)

53

Step 3:

Step 4:

Step 5:

BCA 3rd Sem (Data Structure)

54

Step 6:

Step 7:

BCA 3rd Sem (Data Structure)

55

Step8:

Step9:

 Conversion from one notation to another notation

1)Convert Infix To Prefix Notation

BCA 3rd Sem (Data Structure)

56

While we use infix expressions in our day to day lives. Computers have trouble

understanding this format because they need to keep in mind rules of operator

precedence and also brackets. Prefix and Postfix expressions are easier for a

computer to understand and evaluate.

Examples:

Input : A * B + C / D

Output : + * A B/ C D

Input : (A - B/C) * (A/K-L)

Output : *-A/BC-/AKL

To convert an infix to postfix expression refer to this article Stack | Set 2 (Infix to

Postfix). We use the same to convert Infix to Prefix.

Step 1: Reverse the infix expression i.e A+B*C will become C*B+A. Note while

reversing each ‘(‘ will become ‘)’ and each ‘)’ becomes ‘(‘.

Step 2: Obtain the postfix expression of the modified expression i.e CB*A+.

Step 3: Reverse the postfix expression. Hence in our example prefix is +A*BC.

2)Infix to Prefix conversion using two stacks

Infix : An expression is called the Infix expression if the operator appears in

between the operands in the expression. Simply of the form (operand1 operator

operand2).

Example : (A+B) * (C-D)

Prefix : An expression is called the prefix expression if the operator appears in the

expression before the operands. Simply of the form (operator operand1 operand2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

https://www.geeksforgeeks.org/stack-set-2-infix-to-postfix/
https://www.geeksforgeeks.org/stack-set-2-infix-to-postfix/

BCA 3rd Sem (Data Structure)

57

Given an Infix expression, convert it into a Prefix expression using two stacks.

Examples:

Input : A * B + C / D

Output : + * A B/ C D

Input : (A - B/C) * (A/K-L)

Output : *-A/BC-/AKL

The idea is to use one stack for storing operators and other to store operands. The

stepwise algo is:

Traverse the infix expression and check if given character is an operator or an

operand.

If it is an operand, then push it into operand stack.

If it is an operator, then check if priority of current operator is greater than or less

than or equal to the operator at top of the stack. If priority is greater, then push

operator into operator stack. Otherwise pop two operands from operand stack, pop

operator from operator stack and push string operator + operand1 + operand 2 into

operand stack. Keep popping from both stacks and pushing result into operand

stack until priority of current operator is less than or equal to operator at top of the

operator stack.

If current character is ‘(‘, then push it into operator stack.

If current character is ‘)’, then check if top of operator stack is opening bracket or

not. If not pop two operands from operand stack, pop operator from operator stack

and push string operator + operand1 + operand 2 into operand stack. Keep popping

from both stacks and pushing result into operand stack until top of operator stack is

an opening bracket.

BCA 3rd Sem (Data Structure)

58

The final prefix expression is present at top of operand stack.

 Queues:

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue) and

the other is used to remove data (dequeue). Queue follows First-In-First-Out

methodology, i.e., the data item stored first will be accessed first.

A real-world example of queue can be a single-lane one-way road, where the

vehicle enters first, exits first. More real-world examples can be seen as queues at

the ticket windows and bus-stops.

 Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and

then completely erasing it from the memory. Here we shall try to understand the

basic operations associated with queues −

enqueue() − add (store) an item to the queue.

dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation

efficient. These are −

peek() − Gets the element at the front of the queue without removing it.

isfull() − Checks if the queue is full.

BCA 3rd Sem (Data Structure)

59

isempty() − Checks if the queue is empty.

Comparison between Stack and Queue

STACKS QUEUES

Stacks are based on the LIFO

principle, i.e., the element

inserted at the last, is the first

element to come out of the

list.

Queues are based on the FIFO principle, i.e.,

the element inserted at the first, is the first

element to come out of the list.

Insertion and deletion in

stacks takes place only from

one end of the list called the

top.

Insertion and deletion in queues takes place

from the opposite ends of the list. The

insertion takes place at the rear of the list

and the deletion takes place from the front of

the list.

Insert operation is called push

operation. Insert operation is called enqueue operation.

Delete operation is called pop

operation.

Delete operation is called dequeue

operation.

In stacks we maintain only

one pointer to access the list,

called the top, which always

points to the last element

present in the list.

In queues we maintain two pointers to

access the list. The front pointer always

points to the first element inserted in the list

and is still present, and the rear pointer

always points to the last inserted element.

BCA 3rd Sem (Data Structure)

60

STACKS QUEUES

Stack is used in solving

problems works on recursion.

Queue is used in solving problems having

sequential processing.

 Memory Representation of Queue in Memory

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e.

front and rear, that are implemented in the case of every queue. Front and rear

variables point to the position from where insertions and deletions are performed in

a queue. Initially, the value of front and queue is -1 which represents an empty

queue. Array representation of a queue containing 5 elements along with the

respective values of front and rear, is shown in the following figure.

1)Insertion in Queue using Array

BCA 3rd Sem (Data Structure)

61

The above figure shows the queue of characters forming the English

word "HELLO". Since, No deletion is performed in the queue till now, therefore

the value of front remains -1 . However, the value of rear increases by one every

time an insertion is performed in the queue. After inserting an element into the

queue shown in the above figure, the queue will look something like following.

The value of rear will become 5 while the value of front remains same.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

If the item is to be inserted as the first element in the list, in that case set the value

of front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one

having rear as the index.

Algorithm

BCA 3rd Sem (Data Structure)

62

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

2)Deletion in Queue using Array

After deleting an element, the value of front will increase from -1 to 0. however,

the queue will look something like following.

BCA 3rd Sem (Data Structure)

63

If, the value of front is -1 or value of front is greater than rear , write an underflow

message and exit.

Otherwise, keep increasing the value of front and return the item stored at the front

end of the queue at each time.

Algorithm

Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

 Memory Representation of Queue in Memory

Linked List implementation of Queue

Due to the drawbacks , the array implementation can not be used for the large scale

applications where the queues are implemented. One of the alternative of array

implementation is linked list implementation of queue.

BCA 3rd Sem (Data Structure)

64

1)Insertion in Queue using LinkList

The insert operation append the queue by adding an element to the end of the

queue. The new element will be the last element of the queue.

Algorithm

Step 1: Allocate the space for the new node PTR

Step 2: SET PTR -> DATA = VAL

Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

Step 4: END

BCA 3rd Sem (Data Structure)

65

2)Deletion in Queue using LinkList

Deletion operation removes the element that is first inserted among all the queue

elements. Firstly, we need to check either the list is empty or not. The condition

front == NULL becomes true if the list is empty, in this case , we simply write

underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this

purpose, copy the node pointed by the front pointer into the pointer ptr. Now, shift

the front pointer, point to its next node and free the node pointed by the node ptr.

The algorithm and C function is given as follows.

Algorithm

Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

BCA 3rd Sem (Data Structure)

66

Step 2: SET PTR = FRONT

Step 3: SET FRONT = FRONT -> NEXT

Step 4: FREE PTR

Step 5: END

 Types of Queues in Data Structure

Simple Queue

As is clear from the name itself, simple queue lets us perform the operations

simply. i.e., the insertion and deletions are performed likewise. Insertion occurs at

the rear (end) of the queue and deletions are performed at the front (beginning) of

the queue list.

All nodes are connected to each other in a sequential manner. The pointer of the

first node points to the value of the second and so on.

Simple queue insertion using array(static queue)

Here q is an array with n elements, FRONT and REAR points to the front and rear

of the queue. ITEM is the value to be inserted. This algorithm inserts an ITEM in

the simple queue.

Step1: If (REAR=N) then (check overflow)

 write “OVERFLOW” and EXIT

(end if)

Step 2: IF (FRONT=NULL and rear = NULL) then

BCA 3rd Sem (Data Structure)

67

 (check if QUEUE is empty)

Set FRONT:= 1, REAR:=1

Else

 Set REAR = REAR+1 (Increment REAR by 1)

[End if]

Step 3: Q[REAR] = ITEM

Step 4: Exit

Simple queue deletion using array(Static queue)

Here q is an array with N elements, FRONT and RAER points to the front and rear

of the QUEUE. It deletes the element from front of the queue and assign to

variable ITEM

Step 1: If(FRONT = NULL) then [check for underflow)

 write “Underflow “ and exit

[exit]

Step2: Set ITEM := Q[FRONT]

Step3 : If (FRONT= REAR) then

 (check if only one element is left)

 Set FRONT := NULL

Set REAR := NULL

Else

Set FRONT:= FRONT+1 [increment by 1]

[End if]

Step 4: exit

BCA 3rd Sem (Data Structure)

68

Simple queue insert using Linked List(Dynamic queue)

Here Q is a queue using linked list and we have to insert an item, front and rear are

two pointers used to manage queue insertion and deletion operation. Avail is the

free pool of memory from where new node for insertion allocated. This algorithm

inserts the item in queue Q.

Step1: If Avail = null then

 write “overflow “ and exit

 [End if]

Step2: Set TEMP:= AVAIL, AVAIL:= LINK[AVAIL],

 Set INFO[TEMP]:= ITEM, LINK[TEMP]: =NULL

Step3: IF FRONT = NULL Then

 Set FRONT := TEMP, REAR := TEMP

Else

 Set LINK [REAR]:= TEMP,

 Set REAR := TEMP

[End IF]

Step 4: Exit

Simple Queue Deletion using Linked List(Dynamic Queue)

Here Q is a queue using linked list and we have to insert an item, front and rear are

two pointers used to manage queue insertion and deletion operation. Avail is the

free pool of memory from where deleted node is attached . This algorithm deletes

the front node and information is stored in item.

Step 1: IF FRONT =NULL hen

 write “ underflow” and exit

Step 2: Set ITEM = INFO [FRONT]

BCA 3rd Sem (Data Structure)

69

Step 3: If FRONT = REAR then

 set TEMP:= FRONT

Set Front:= NULL and REAR:= Null

 Else

 Set TEMP:= FRONT

 Set FRONT:= LINK[FRONT]

[End if]

Step4: Set LINK[TEMP]:= AVAIL

 AVAIL := TEMP

Step 5 : EXIT

Circular Queue

Unlike the simple queues, in a circular queue each node is connected to the next

node in sequence but the last node’s pointer is also connected to the first node’s

BCA 3rd Sem (Data Structure)

70

address. Hence, the last node and the first node also gets connected making a

circular link overall.

Algorithm :- Circular queue insert using array (static queue)

Here Q is a circular queue using linear array with size of N and we have to insert

an item, front and REAR are two index uses to manage the pointer for insertion

and deletion operation. This algorithm inserts the item in circular queue Q at

appropriate position.

 Step : IF (FRONT =1 and REAR =N) or (FRONT = REAR+1) then

 Write “OVERFLOW” and EXIT [overflow check]

 Step : IF FRONT = NULL Then

 Set FRONT : =1 and REAR : =1

 ELSE IF REAR =N Then

 Set REAR : = 1

 Else

 Set REAR : =1

 [END IF]

 Step : 3 Set Q [REAR] : = ITEM

 Step :4 EXIT

Algorithm : Circular queue deletion using array (Static Queue)

Here Q is a circular Queue using linear array with size N and we have to delete an

item, Front, Rear are twp index uses to manage the pointer for insertion and

BCA 3rd Sem (Data Structure)

71

deletion operation. This algorithm deletes element from front and assign it in the

item.

 Step : IF FRONT = NULL Then [Empty queue check]

 write “underflow “ and Exit

 [End IF]

 Step 2 : Set Item : = Q [FRONT]

 Set FRONT := REAR : = NULL

 Else IF FRONT = N Then

 Set FRONT : = 1

 Else

 Set Front : = Front + 1

 [END IF]

 Step 4 : EXIT

 The benefit of a circular queue:

1. In circular queue, memory is utilized. If we delete any element that position is

used later, because it is circular.

2. Circular queue consumes less memory than linear queue because in queue while

doing insertion after deletion operation it allocate an extra space the first remaining

vacant but in circular queue the first is used as it comes immediate after the last.

3. In CQ the memory of the deleted process can be used by some other new

process.

4. A standard queue suffers from a rebuffering problem during deque operations.

By making the queue circular and linking the head to the tail, this alleviates the

problem and allows insertion and deletion in constant time.

BCA 3rd Sem (Data Structure)

72

Priority Queue

Priority queue makes data retrieval possible only through a pre determined priority

number assigned to the data items.

While the deletion is performed in accordance to priority number (the data item

with highest priority is removed first), insertion is performed only in the order.

Comparison Chart

BASIS FOR

COMPARISON
LINEAR QUEUE CIRCULAR QUEUE

Basic Organizes the data elements

and instructions in a

sequential order one after

the other.

Arranges the data in the circular

pattern where the last element is

connected to the first element.

BCA 3rd Sem (Data Structure)

73

BASIS FOR

COMPARISON
LINEAR QUEUE CIRCULAR QUEUE

Order of task

execution

Tasks are executed in order

they were placed before

(FIFO).

Order of executing a task may

change.

Insertion and

deletion

The new element is added

from the rear end and

removed from the front.

Insertion and deletion can be

done at any position.

Performance Inefficient Works better than the linear

queue.

 Doubly Ended Queue (Dequeue)

BCA 3rd Sem (Data Structure)

74

Double ended queue is a linear list of element , in which all insertion and deletion

are made at the either end of the list. A dequeue is pronounced as “deck” or “ de

queue”.

In simple words we can say that dequeue is special types of queue in which

insertion and deletion operation can be performed on either end i.e. We can insert

element in the queue from front as well as rear but not in middle of the queue and

deletion operation can also be performed on any end i.e we can delete element

from front as we as from rear position of the queue but not in middle.

There are two types of deque

 Input restricted deque

 Output restricted deque

Input Restricted Deque

In this type of queue insertion can be performed on only one end but deletion can

be performed on both end of the queue.

Output Restricted Deque

In this type of deque array with two variable on both end but deletion can be

performed only on one end.

A deque is commonly implemented as a circular array with two variable LEFT and

RIGHT taking care of the active ends of the queue.

to understand the wirking of deque, consider the following example in which we

assume that insertion and deletion is applicable on both end.

 Implementation of Double ended Queue

Here we will implement a double ended queue using a circular array. It will have

the following methods:

 push_back : inserts element at back

BCA 3rd Sem (Data Structure)

75

 push_front : inserts element at front

 pop_back : removes last element

 pop_front : removes first element

 get_back : returns last element

 get_front : returns first element

 empty : returns true if queue is empty

 full : returns true if queue is full

Insert Elements at Front

First we check if the queue is full. If its not full we insert an element at front end

by following the given conditions :

If the queue is empty then intialize front and rear to 0. Both will point to the first

element.

Else we decrement front and insert the element. Since we are using circular array,

we have to keep in mind that if front is equal to 0 then instead of decreasing it by 1

we make it equal to SIZE-1.

BCA 3rd Sem (Data Structure)

76

Insert Elements at back

Again we check if the queue is full. If its not full we insert an element at back by

following the given conditions:

If the queue is empty then initialize front and rear to 0. Both will point to the first

element.

Else we increment rear and insert the element. Since we are using circular array,

we have to keep in mind that if rear is equal to SIZE-1 then instead of increasing it

by 1 we make it equal to 0.

Delete First Element

In order to do this, we first check if the queue is empty. If its not then delete the

front element by following the given conditions :

If only one element is present we once again make front and rear equal to -1.

BCA 3rd Sem (Data Structure)

77

Else we increment front. But we have to keep in mind that if front is equal to

SIZE-1 then instead of increasing it by 1 we make it equal to 0.

Delete Last Element

Inorder to do this, we again first check if the queue is empty. If its not then we

delete the last element by following the given conditions :

If only one element is present we make front and rear equal to -1.

Else we decrement rear. But we have to keep in mind that if rear is equal to 0 then

instead of decreasing it by 1 we make it equal to SIZE-1.

BCA 3rd Sem (Data Structure)

78

 Implementation of Queue Data Structure

Queue can be implemented using an Array, Stack or Linked List. The easiest way

of implementing a queue is by using an Array.

Initially the head(FRONT) and the tail(REAR) of the queue points at the first index

of the array (starting the index of array from 0). As we add elements to the queue,

the tail keeps on moving ahead, always pointing to the position where the next

element will be inserted, while the head remains at the first index.

 When we remove an element from Queue, we can follow two possible

approaches (mentioned [A] and [B] in above diagram). In [A] approach, we

remove the element at head position, and then one by one shift all the other

elements in forward position.

In approach [B] we remove the element from head position and then move head to

the next position.

In approach [A] there is an overhead of shifting the elements one position

forward every time we remove the first element.

In approach [B] there is no such overhead, but whenever we move head one

position ahead, after removal of first element, the size on Queue is reduced by one

space each time.

BCA 3rd Sem (Data Structure)

79

Algorithm for ENQUEUE operation

Check if the queue is full or not.

If the queue is full, then print overflow error and exit the program.

If the queue is not full, then increment the tail and add the element.

Algorithm for DEQUEUE operation

Check if the queue is empty or not.

If the queue is empty, then print underflow error and exit the program.

If the queue is not empty, then print the element at the head and increment the head

 Applications of Queue

BCA 3rd Sem (Data Structure)

80

Queue, as the name suggests is used whenever we need to manage any group of

objects in an order in which the first one coming in, also gets out first while the

others wait for their turn, like in the following scenarios:

Serving requests on a single shared resource, like a printer, CPU task scheduling

etc.

In real life scenario, Call Center phone systems uses Queues to hold people calling

them in an order, until a service representative is free.

Handling of interrupts in real-time systems. The interrupts are handled in the same

order as they arrive i.e. First come first served.

BCA 3rd Sem (Data Structure)

81

 UNIT III

BCA 3rd Sem (Data Structure)

82

 Linked Lists
A linked list is a sequence of data structures, which are connected together via

links.

Linked List is a sequence of links which contains items. Each link contains a

connection to another link. Linked list is the second most-used data structure after

array. Following are the important terms to understand the concept of Linked List.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 Linked List − A Linked List contains the connection link to the first link

called First.

Types of Linked List

Following are the various types of linked list.

 Singly Linked List − Item navigation is forward only.

 Doubly Linked List − Items can be navigated forward and backward.

 Circular Linked List − Last item contains link of the first element as next

and the first element has a link to the last element as previous.

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Display − Displays the complete list.

 Search − Searches an element using the given key.

 Delete − Deletes an element using the given key.

1) Singly Linked List − Singly Linked Lists are a type of data structure. A

linked list provides an alternative to an array-based structure.

A linked list, in its simplest form, in a collection of nodes that collectively

form linear sequence.

In a singly linked list, each node stores a reference to an object that is an

element of the sequence, as well as a reference to the next node of the list. It

does not store any pointer or reference to the previous node.

To store a single linked list, only the reference or pointer to the first node in

that list must be stored. The last node in a single linked list points to nothing.

BCA 3rd Sem (Data Structure)

83

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 A node can be added in three ways

1) At the front of the linked list:

The new node is always added before the head of the given Linked List. And

newly added node becomes the new head of the Linked List. For example if

the given Linked List is 10->15->20->25 and we add an item 5 at the front,

then the Linked List becomes 5->10->15->20->25.

Algorithm

 Step 1: IF PTR = NULL

Write OVERFLOW

 Go to Step 7

 [END OF IF]

 Step 2: SET NEW_NODE = PTR

 Step 3: SET PTR = PTR → NEXT

 Step 4: SET NEW_NODE → DATA = VAL

 Step 5: SET NEW_NODE → NEXT = HEAD

 Step 6: SET HEAD = NEW_NODE

BCA 3rd Sem (Data Structure)

84

 Step 7: EXIT

2) After a given node: We are given pointer to a node, and the new node is

inserted after the given node.

 STEP 1: IF PTR = NULL

WRITE OVERFLOW

 GOTO STEP 12

 END OF IF

 STEP 2: SET NEW_NODE = PTR

 STEP 3: NEW_NODE → DATA = VAL

 STEP 4: SET TEMP = HEAD

 STEP 5: SET I = 0

 STEP 6: REPEAT STEP 5 AND 6 UNTIL I<loc< li=""> </loc<>

 STEP 7: TEMP = TEMP → NEXT

 STEP 8: IF TEMP = NULL

WRITE "DESIRED NODE NOT PRESENT"

 GOTO STEP 12

 END OF IF

 END OF LOOP

 STEP 9: PTR → NEXT = TEMP → NEXT

 STEP 10: TEMP → NEXT = PTR

 STEP 11: SET PTR = NEW_NODE

 STEP 12: EXIT

3) At the end of the linked list: The new node is always added after the last node

of the given Linked List. For example if the given Linked List is 5->10->15->20-

>25 and we add an item 30 at the end, then the Linked List becomes 5->10->15-

>20->25->30.

Since a Linked List is typically represented by the head of it, we have to traverse

the list till end and then change the next of last node to new node.

BCA 3rd Sem (Data Structure)

85

 Step 1: IF PTR = NULL

Write OVERFLOW

 Go to Step 1

 [END OF IF]

 Step 2: SET NEW_NODE = PTR

 Step 3: SET PTR = PTR - > NEXT

 Step 4: SET NEW_NODE - > DATA = VAL

 Step 5: SET NEW_NODE - > NEXT = NULL

 Step 6: SET PTR = HEAD

 Step 7: Repeat Step 8 while PTR - > NEXT != NULL

 Step 8: SET PTR = PTR - > NEXT

[END OF LOOP]

 Step 9: SET PTR - > NEXT = NEW_NODE

 Step 10: EXIT

Deletion

1) Deletes an element at the beginning of the list.

Deleting a node from the beginning of the list is the simplest operation of all. It

just need a few adjustments in the node pointers. Since the first node of the list

is to be deleted, therefore, we just need to make the head, point to the next of

the head.

 Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 5

 [END OF IF]

 Step 2: SET PTR = HEAD

BCA 3rd Sem (Data Structure)

86

 Step 3: SET HEAD = HEAD -> NEXT

 Step 4: FREE PTR

 Step 5: EXIT

2) Deletes an element at the given location of the list.

In order to delete the node, which is present after the specified node, we need to

skip the desired number of nodes to reach the node after which the node will be

deleted. We need to keep track of the two nodes. The one which is to be deleted

the other one if the node which is present before that node.

Algorithm

 STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

 GOTO STEP 10

 END OF IF

BCA 3rd Sem (Data Structure)

87

 STEP 2: SET TEMP = HEAD

 STEP 3: SET I = 0

 STEP 4: REPEAT STEP 5 TO 8 UNTIL I<loc< li=""> </loc<>

 STEP 5: TEMP1 = TEMP

 STEP 6: TEMP = TEMP → NEXT

 STEP 7: IF TEMP = NULL

WRITE "DESIRED NODE NOT PRESENT"

 GOTO STEP 12

 END OF IF

 STEP 8: I = I+1

END OF LOOP

 STEP 9: TEMP1 → NEXT = TEMP → NEXT

 STEP 10: FREE TEMP

 STEP 11: EXIT

3) Deletes an element at the end of the list.

There are two scenarios in which, a node is deleted from the end of the linked

list.

1. There is only one node in the list and that needs to be deleted.

2. There are more than one node in the list and the last node of the list will be

deleted.

Algorithm

 Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 8

 [END OF IF]

 Step 2: SET PTR = HEAD

 Step 3: Repeat Steps 4 and 5 while PTR -> NEXT!= NULL

 Step 4: SET PREPTR = PTR

 Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

 Step 6: SET PREPTR -> NEXT = NULL

 Step 7: FREE PTR

 Step 8: EXIT

BCA 3rd Sem (Data Structure)

88

Display − Displays the complete list. Traversing is the most common operation

that is performed in almost every scenario of singly linked list. Traversing means

visiting each node of the list once in order to perform some operation on that.

Algorithm

 STEP 1: SET PTR = HEAD

 STEP 2: IF PTR = NULL

 WRITE "EMPTY LIST"

 GOTO STEP 7

 END OF IF

 STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR != NULL

 STEP 5: PRINT PTR→ DATA

 STEP 6: PTR = PTR → NEXT

[END OF LOOP]

 STEP 7: EXIT

Search − Searches an element using the given key.

Searching is performed in order to find the location of a particular element in

the list. Searching any element in the list needs traversing through the list

and make the comparison of every element of the list with the specified

element. If the element is matched with any of the list element then the

location of the element is returned from the function.

Algorithm

 Step 1: SET PTR = HEAD

 Step 2: Set I = 0

 STEP 3: IF PTR = NULL

 WRITE "EMPTY LIST"

 GOTO STEP 8

 END OF IF

 STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR != NULL

 STEP 5: if ptr → data = item

 Write i+1

 End of IF

 STEP 6: I = I + 1

 STEP 7: PTR = PTR → NEXT

[END OF LOOP]

 STEP 8: EXIT

BCA 3rd Sem (Data Structure)

89

 Doubly linked list

Doubly linked list is a complex type of linked list in which a node contains a

pointer to the previous as well as the next node in the sequence. Therefore, in a

doubly linked list, a node consists of three parts: node data, pointer to the next

node in sequence (next pointer) , pointer to the previous node (previous pointer). A

sample node in a doubly linked list is shown in the figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their

data part, is shown in the following image.

 Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the following image.

Generally, doubly linked list consumes more space for every node and therefore,

causes more expansive basic operations such as insertion and deletion. However,

we can easily manipulate the elements of the list since the list maintains pointers in

both the directions (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address

1. The head pointer points to the starting address 1. Since this is the first element

being added to the list therefore the prev of the list contains null. The next node of

the list resides at address 4 therefore the first node contains 4 in its next pointer.

BCA 3rd Sem (Data Structure)

90

We can traverse the list in this way until we find any node containing null or -1 in

its next part.

 Basic Operations

Following are the basic operations supported by a list.

 Insertion –

1)Adds an element at the beginning of the list.

Algorithm :

 Step 1: IF ptr = NULL

 Write OVERFLOW

 Go to Step 9

 [END OF IF]

 Step 2: SET NEW_NODE = ptr

 Step 3: SET ptr = ptr -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET NEW_NODE -> PREV = NULL

 Step 6: SET NEW_NODE -> NEXT = START

BCA 3rd Sem (Data Structure)

91

 Step 7: SET head -> PREV = NEW_NODE

 Step 8: SET head = NEW_NODE

 Step 9: EXIT

2)Adds an element at the given location of the list.

Algorithm

 Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 15

 [END OF IF]

 Step 2: SET NEW_NODE = PTR

 Step 3: SET PTR = PTR -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET TEMP = START

 Step 6: SET I = 0

 Step 7: REPEAT 8 to 10 until I<="" li="">

 Step 8: SET TEMP = TEMP -> NEXT

 STEP 9: IF TEMP = NULL

 STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

 GOTO STEP 15

 [END OF IF]

 [END OF LOOP]

 Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

 Step 12: SET NEW_NODE -> PREV = TEMP

 Step 13 : SET TEMP -> NEXT = NEW_NODE

BCA 3rd Sem (Data Structure)

92

 Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

 Step 15: EXIT

3)Adds an element at the end location of the list.

Algorithm

 Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

 Step 2: SET NEW_NODE = PTR

 Step 3: SET PTR = PTR -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET NEW_NODE -> NEXT = NULL

 Step 6: SET TEMP = START

 Step 7: Repeat Step 8 while TEMP -> NEXT != NULL

 Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

 Step 9: SET TEMP -> NEXT = NEW_NODE

 Step 10C: SET NEW_NODE -> PREV = TEMP

 Step 11: EXIT

BCA 3rd Sem (Data Structure)

93

Deletion

1)Deletes an element at the beginning of the list.

Algorithm

 STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

GOTO STEP 6

 STEP 2: SET PTR = HEAD

 STEP 3: SET HEAD = HEAD → NEXT

 STEP 4: SET HEAD → PREV = NULL

 STEP 5: FREE PTR

 STEP 6: EXIT

2)Deletes an element at the given location of the list.

Algorithm

 Step 1: IF HEAD = NULL

BCA 3rd Sem (Data Structure)

94

 Write UNDERFLOW

 Go to Step 9

 [END OF IF]

 Step 2: SET TEMP = HEAD

 Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

 Step 4: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

 Step 5: SET PTR = TEMP -> NEXT

 Step 6: SET TEMP -> NEXT = PTR -> NEXT

 Step 7: SET PTR -> NEXT -> PREV = TEMP

 Step 8: FREE PTR

 Step 9: EXIT

3) Deletes an element at the end of the list.

Deletion of the last node in a doubly linked list needs traversing the list in order

to reach the last node of the list and then make pointer adjustments at that

position.

In order to delete the last node of the list, we need to follow the following steps.

 If the list is already empty then the condition head == NULL will become

true and therefore the operation can not be carried on.

 If there is only one node in the list then the condition head → next == NULL

become true. In this case, we just need to assign the head of the list to NULL

and free head in order to completely delete the list.

 Otherwise, just traverse the list to reach the last node of the list. This will be

done by using the following statements.

Step 1: IF HEAD = NULL

BCA 3rd Sem (Data Structure)

95

Write UNDERFLOW

Go to Step 7

[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL

Step 4: SET TEMP = TEMP->NEXT

[END OF LOOP]

Step 5: SET TEMP ->PREV-> NEXT = NULL

Step 6: FREE TEMP

Step 7: EXIT

Display − Displays the complete list.

 Traversing is the most common operation in case of each data structure.

For this purpose, copy the head pointer in any of the temporary pointer

ptr. then, traverse through the list by using while loop. Keep shifting

value of pointer variable ptr until we find the last node. The last node

contains null in its next part.

Algorithm

 Step 1: IF HEAD == NULL

BCA 3rd Sem (Data Structure)

96

 WRITE "UNDERFLOW"

 GOTO STEP 6

 [END OF IF]

 Step 2: Set PTR = HEAD

 Step 3: Repeat step 4 and 5 while PTR != NULL

 Step 4: Write PTR → data

 Step 5: PTR = PTR → next

 Step 6: Exit

Search − Searches an element using the given key.

We just need traverse the list in order to search for a specific element in the

list. Perform following operations in order to search a specific operation.

 Algorithm

 Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 8

 [END OF IF]

 Step 2: Set PTR = HEAD

 Step 3: Set i = 0

 Step 4: Repeat step 5 to 7 while PTR != NULL

 Step 5: IF PTR → data = item

 return i

 [END OF IF]

 Step 6: i = i + 1

 Step 7: PTR = PTR → next

 Step 8: Exit

 Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first

node of the list. We can have circular singly linked list as well as circular doubly

linked list.

We traverse a circular singly linked list until we reach the same node where we

started. The circular singly liked list has no beginning and no ending. There is no

null value present in the next part of any of the nodes.

The following image shows a circular singly linked list.

BCA 3rd Sem (Data Structure)

97

Circular linked list are mostly used in task maintenance in operating systems.

There are many examples where circular linked list are being used in computer

science including browser surfing where a record of pages visited in the past by the

user, is maintained in the form of circular linked lists and can be accessed again on

clicking the previous button.

 Memory Representation of circular linked list:

In the following image, memory representation of a circular linked list containing

marks of a student in 4 subjects. However, the image shows a glimpse of how the

circular list is being stored in the memory. The start or head of the list is pointing

to the element with the index 1 and containing 13 marks in the data part and 4 in

the next part. Which means that it is linked with the node that is being stored at 4th

index of the list.

However, due to the fact that we are considering circular linked list in the memory

therefore the last node of the list contains the address of the first node of the list.

BCA 3rd Sem (Data Structure)

98

 Circular Doubly Linked List

Circular doubly linked list is a more complexed type of data structure in which a

node contain pointers to its previous node as well as the next node. Circular doubly

linked list doesn't contain NULL in any of the node. The last node of the list

contains the address of the first node of the list. The first node of the list also

contain address of the last node in its previous pointer.

A circular doubly linked list is shown in the following figure.

BCA 3rd Sem (Data Structure)

99

Due to the fact that a circular doubly linked list contains three parts in its structure

therefore, it demands more space per node and more expensive basic operations.

However, a circular doubly linked list provides easy manipulation of the pointers

and the searching becomes twice as efficient.

 Memory Management of Circular Doubly linked list

The following figure shows the way in which the memory is allocated for a

circular doubly linked list. The variable head contains the address of the first

element of the list i.e. 1 hence the starting node of the list contains data A is stored

at address 1. Since, each node of the list is supposed to have three parts therefore,

the starting node of the list contains address of the last node i.e. 8 and the next

node i.e. 4. The last node of the list that is stored at address 8 and containing data

as 6, contains address of the first node of the list as shown in the image i.e. 1. In

circular doubly linked list, the last node is identified by the address of the first

node which is stored in the next part of the last node therefore the node which

contains the address of the first node, is actually the last node of the list.

Priority Queue is an extension of queue with following properties.

1. Every item has a priority associated with it.

2. An element with high priority is dequeued before an element with low

priority.

3. If two elements have the same priority, they are served according to their

order in the queue.

BCA 3rd Sem (Data Structure)

100

 Priority Queue

Priority Queue is an extension of queue with following properties.

1. Every item has a priority associated with it.

2. An element with high priority is dequeued before an element with low

priority.

3. If two elements have the same priority, they are served according to their

order in the queue.

A typical priority queue supports following operations.

insert(item, priority): Inserts an item with given priority.

getHighestPriority (): Returns the highest priority item.

DeleteHighestPriority (): Removes the highest priority item.

 Dynamic storage management

Resources are always a premium. We have strived to achieve better utilization of

resources at all times; that is the premise of our progress. Related to this pursuit, is

the concept of memory allocation. Memory has to be allocated to the variables that

we create, so that actual variables can be brought to existence. Now there is a

constraint as how we think it happens, and how it actually happens.

 Garbage collection

Garbage collection (GC) is a dynamic approach to automatic memory management

and heap allocation that processes and identifies dead memory blocks and

BCA 3rd Sem (Data Structure)

101

reallocates storage for reuse. The primary purpose of garbage collection is to

reduce memory leaks.

GC implementation requires three primary approaches, as follows:

 Mark-and-sweep - In process when memory runs out, the GC locates all

accessible memory and then reclaims available memory.

 Reference counting - Allocated objects contain a reference count of the

referencing number. When the memory count is zero, the object is garbage and is

then destroyed. The freed memory returns to the memory heap.

Copy collection - There are two memory partitions. If the first partition is full, the

GC locates all accessible data structures and copies them to the second partition,

compacting memory after GC process and allowing continuous free memory.

 Tree
In computer science, a tree is a widely used abstract data type (ADT)—or data

structure implementing this ADT—that simulates a hierarchical tree structure, with

a root value and subtrees of children with a parent node, represented as a set of

linked nodes.

A tree data structure can be defined recursively as a collection of nodes (starting at

a root node), where each node is a data structure consisting of a value, together

with a list of references to nodes (the "children"), with the constraints that no

reference is duplicated, and none points to the root.

Properties-

The important properties of tree data structure are-

 There is one and only one path between every pair of vertices in a tree.

 A tree with n vertices has exactly (n-1) edges.

 A graph is a tree if and only if it is minimally connected.

 Any connected graph with n vertices and (n-1) edges is a tree.

Tree Terminology-

 The important terms related to tree data structure are-

BCA 3rd Sem (Data Structure)

102

1. Root-

 The first node from where the tree originates is called as a root node.

 In any tree, there must be only one root node.

 We can never have multiple root nodes in a tree data structure.

BCA 3rd Sem (Data Structure)

103

2. Edge-

 The connecting link between any two nodes is called as an edge.

 In a tree with n number of nodes, there are exactly (n-1) number of edges.

Example-

3. Parent-

 The node which has a branch from it to any other node is called as a parent

node.

 In other words, the node which has one or more children is called as a parent

node.

 In a tree, a parent node can have any number of child nodes.

Example-

BCA 3rd Sem (Data Structure)

104

Here,

 Node A is the parent of nodes B and C

 Node B is the parent of nodes D, E and F

 Node C is the parent of nodes G and H

 Node E is the parent of nodes I and J

 Node G is the parent of node K

4. Child-

 The node which is a descendant of some node is called as a child node.

 All the nodes except root node are child nodes.

Example-

BCA 3rd Sem (Data Structure)

105

Here,

 Nodes B and C are the children of node A

 Nodes D, E and F are the children of node B

 Nodes G and H are the children of node C

 Nodes I and J are the children of node E

 Node K is the child of node G

5. Siblings-

 Nodes which belong to the same parent are called as siblings.

 In other words, nodes with the same parent are sibling nodes.

Example-

BCA 3rd Sem (Data Structure)

106

 Nodes B and C are siblings

 Nodes D, E and F are siblings

 Nodes G and H are siblings

 Nodes I and J are siblings

6. Degree-

 Degree of a node is the total number of children of that node.

 Degree of a tree is the highest degree of a node among all the nodes in the

tree.

Example-

Here,

 Degree of node A = 2

 Degree of node B = 3

 Degree of node C = 2

 Degree of node D = 0

 Degree of node E = 2

 Degree of node F = 0

 Degree of node G = 1

 Degree of node H = 0

 Degree of node I = 0

 Degree of node J = 0

 Degree of node K = 0

7. Internal Node-

BCA 3rd Sem (Data Structure)

107

 The node which has at least one child is called as an internal node.

 Internal nodes are also called as non-terminal nodes.

 Every non-leaf node is an internal node.

Example-

Here, nodes A, B, C, E and G are internal nodes.

8. Leaf Node-

 The node which does not have any child is called as a leaf node.

 Leaf nodes are also called as external nodes or terminal nodes.

Example-

BCA 3rd Sem (Data Structure)

108

9. Level-

 In a tree, each step from top to bottom is called as level of a tree.

 The level count starts with 0 and increments by 1 at each level or step.

Example-

10. Height-

 Total number of edges that lies on the longest path from any leaf node to a

particular node is called as height of that node.

 Height of a tree is the height of root node.

 Height of all leaf nodes = 0

Example-

BCA 3rd Sem (Data Structure)

109

Here,

 Height of node A = 3

 Height of node B = 2

 Height of node C = 2

 Height of node D = 0

 Height of node E = 1

 Height of node F = 0

 Height of node G = 1

 Height of node H = 0

 Height of node I = 0

 Height of node J = 0

 Height of node K = 0

11. Subtree-

 In a tree, each child from a node forms a subtree recursively.

 Every child node forms a subtree on its parent node.

Example-

BCA 3rd Sem (Data Structure)

110

 Binary Tree

We extend the concept of linked data structures to structure containing nodes with

more than one self-referenced field. A binary tree is made of nodes, where each

node contains a "left" reference, a "right" reference, and a data element. The

topmost node in the tree is called the root.

Every node (excluding a root) in a tree is connected by a directed edge from

exactly one other node. This node is called a parent. On the other hand, each node

can be connected to arbitrary number of nodes, called children. Nodes with no

children are called leaves, or external nodes. Nodes which are not leaves are called

internal nodes. Nodes with the same parent are called siblings.

More tree terminology:

 The depth of a node is the number of edges from the root to the node.

 The height of a node is the number of edges from the node to the deepest

leaf.

 The height of a tree is a height of the root.

 A full binary tree.is a binary tree in which each node has exactly zero or two

children.

 A complete binary tree is a binary tree, which is completely filled, with the

possible exception of the bottom level, which is filled from left to right.

BCA 3rd Sem (Data Structure)

111

 Types of Binary Tree

1. Strictly Binary Tree

In Strictly Binary Tree, every non-leaf node contain non-empty left and right sub-

trees. In other words, the degree of every non-leaf node will always be 2. A strictly

binary tree with n leaves, will have (2n - 1) nodes.

A strictly binary tree is shown in the following figure.

2. Complete Binary Tree

A Binary Tree is said to be a complete binary tree if all of the leaves are located at

the same level d. A complete binary tree is a binary tree that contains exactly 2^l

nodes at each level between level 0 and d. The total number of nodes in a complete

binary tree with depth d is 2d+1-1 where leaf nodes are 2d while non-leaf nodes are

2d-1.

BCA 3rd Sem (Data Structure)

112

 Binary Search Trees

We consider a particular kind of a binary tree called a Binary Search Tree (BST).

The basic idea behind this data structure is to have such a storing repository that

provides the efficient way of data sorting, searching and retriving.

A BST is a binary tree where nodes are ordered in the following way:

 each node contains one key (also known as data)

 the keys in the left subtree are less then the key in its parent node, in short L

< P;

 the keys in the right subtree are greater the key in its parent node, in short P

< R;

 duplicate keys are not allowed.

In the following tree all nodes in the left subtree of 10 have keys < 10 while all

nodes in the right subtree > 10. Because both the left and right subtrees of a BST

are again search trees; the above definition is recursively applied to all internal

nodes:

Advantages of using binary search tree

1. Searching become very efficient in a binary search tree since, we get a hint

at each step, about which sub-tree contains the desired element.

2. The binary search tree is considered as efficient data structure in compare to

arrays and linked lists. In searching process, it removes half sub-tree at every

step. Searching for an element in a binary search tree takes o(log2n) time. In

worst case, the time it takes to search an element is 0(n).

BCA 3rd Sem (Data Structure)

113

3. It also speed up the insertion and deletion operations as compare to that in

array and linked list.

 Threaded Binary Tree

 Threaded binary tree data structure. We know that the binary tree nodes may have

at most two children. But if they have only one children, or no children, the link

part in the linked list representation remains null. Using threaded binary tree

representation, we can reuse that empty links by making some threads.

If one node has some vacant left or right child area, that will be used as thread.

There are two types of threaded binary tree. The single threaded tree or fully

threaded binary tree. In single threaded mode, there are another two variations.

Left threaded and right threaded.

In the left threaded mode if some node has no left child, then the left pointer will

point to its inorder predecessor, similarly in the right threaded mode if some node

has no right child, then the right pointer will point to its inorder successor. In both

cases, if no successor or predecessor is present, then it will point to header node.

For fully threaded binary tree, each node has five fields. Three fields like normal

binary tree node, another two fields to store Boolean value to denote whether link

of that side is actual link or thread.

Left Thread Flag Left Link Data Right Link Right Thread Flag

BCA 3rd Sem (Data Structure)

114

These are the examples of left and right threaded tree

This is the fully threaded binary tree

 AVL Tree

AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree

is named AVL in honour of its inventors.

AVL Tree can be defined as height balanced binary search tree in which each node

is associated with a balance factor which is calculated by subtracting the height of

its right sub-tree from that of its left sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1 to 1,

otherwise, the tree will be unbalanced and need to be balanced.

BCA 3rd Sem (Data Structure)

115

Balance Factor (k) = height (left(k)) - height (right(k))

If balance factor of any node is 1, it means that the left sub-tree is one level higher

than the right sub-tree.

If balance factor of any node is 0, it means that the left sub-tree and right sub-tree

contain equal height.

If balance factor of any node is -1, it means that the left sub-tree is one level lower

than the right sub-tree.

An AVL tree is given in the following figure. We can see that, balance factor

associated with each node is in between -1 and +1. therefore, it is an example of

AVL tree.

BCA 3rd Sem (Data Structure)

116

Complexity

Algorithm Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)

Operations on AVL tree

Due to the fact that, AVL tree is also a binary search tree therefore, all the

operations are performed in the same way as they are performed in a binary search

tree. Searching and traversing do not lead to the violation in property of AVL tree.

However, insertion and deletion are the operations which can violate this property

and therefore, they need to be revisited.

SN Operation Description

1 Insertion Insertion in AVL tree is performed in the same way as it is

performed in a binary search tree. However, it may lead to

violation in the AVL tree property and therefore the tree may

need balancing. The tree can be balanced by applying

rotations.

2 Deletion
Deletion can also be performed in the same way as it is

performed in a binary search tree. Deletion may also disturb

the balance of the tree therefore, various types of rotations

are used to rebalance the tree.

https://www.javatpoint.com/insertion-in-avl-tree
https://www.javatpoint.com/deletion-in-avl-tree

BCA 3rd Sem (Data Structure)

117

Why AVL Tree?

AVL tree controls the height of the binary search tree by not letting it to be

skewed. The time taken for all operations in a binary search tree of height h

is O(h). However, it can be extended to O(n) if the BST becomes skewed (i.e.

worst case). By limiting this height to log n, AVL tree imposes an upper bound on

each operation to be O(log n) where n is the number of nodes.

AVL Rotations

We perform rotation in AVL tree only in case if Balance Factor is other than -1, 0,

and 1. There are basically four types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R R rotation : Inserted node is in the right subtree of right subtree of A

3. L R rotation : Inserted node is in the right subtree of left subtree of A

4. R L rotation : Inserted node is in the left subtree of right subtree of A

Where node A is the node whose balance Factor is other than -1, 0, 1.

The first two rotations LL and RR are single rotations and the next two rotations

LR and RL are double rotations. For a tree to be unbalanced, minimum height must

be at least 2, Let us understand each rotation

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into the right subtree of

the right subtree of A, then we perform RR rotation, RR rotation is an

anticlockwise rotation, which is applied on the edge below a node having balance

factor -2

https://www.javatpoint.com/rr-rotation-in-avl-tree

BCA 3rd Sem (Data Structure)

118

In above example, node A has balance factor -2 because a node C is inserted in the

right subtree of A right subtree. We perform the RR rotation on the edge below A.

2. LL Rotation

When BST becomes unbalanced, due to a node is inserted into the left subtree of

the left subtree of C, then we perform LL rotation, LL rotation is clockwise

rotation, which is applied on the edge below a node having balance factor 2.

In above example, node C has balance factor 2 because a node A is inserted in the

left subtree of C left subtree. We perform the LL rotation on the edge below A.

3. LR Rotation

Double rotations are bit tougher than single rotation which has already explained

above. LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed

on subtree and then LL rotation is performed on full tree, by full tree we mean the

first node from the path of inserted node whose balance factor is other than -1, 0,

or 1.

Let us understand each and every step very clearly:

State Action

https://www.javatpoint.com/ll-rotation-in-avl-tree

BCA 3rd Sem (Data Structure)

119

A node B has been inserted into the right subtree of A the

left subtree of C, because of which C has become an

unbalanced node having balance factor 2. This case is L R

rotation where: Inserted node is in the right subtree of left

subtree of C

As LR rotation = RR + LL rotation, hence RR

(anticlockwise) on subtree rooted at A is performed first.

By doing RR rotation, node A, has become the left subtree

of B.

After performing RR rotation, node C is still unbalanced,

i.e., having balance factor 2, as inserted node A is in the

left of left of C

Now we perform LL clockwise rotation on full tree, i.e. on

node C. node C has now become the right subtree of node

B, A is left subtree of B

Balance factor of each node is now either -1, 0, or 1, i.e.

BST is balanced now.

BCA 3rd Sem (Data Structure)

120

4. RL Rotation

As already discussed, that double rotations are bit tougher than single rotation

which has already explained above. R L rotation = LL rotation + RR rotation, i.e.,

first LL rotation is performed on subtree and then RR rotation is performed on full

tree, by full tree we mean the first node from the path of inserted node whose

balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the left subtree of C the

right subtree of A, because of which A has become an

unbalanced node having balance factor - 2. This case is RL

rotation where: Inserted node is in the left subtree of right

subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL

(clockwise) on subtree rooted at C is performed first. By

doing RR rotation, node C has become the right subtree

of B.

After performing LL rotation, node A is still unbalanced,

i.e. having balance factor -2, which is because of the right-

subtree of the right-subtree node A.

https://www.javatpoint.com/rl-rotation-in-avl-tree

BCA 3rd Sem (Data Structure)

121

Now we perform RR rotation (anticlockwise rotation) on

full tree, i.e. on node A. node C has now become the right

subtree of node B, and node A has become the left subtree

of B.

Balance factor of each node is now either -1, 0, or 1, i.e.,

BST is balanced now.

Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

BCA 3rd Sem (Data Structure)

122

On inserting the above elements, especially in the case of H, the BST becomes

unbalanced as the Balance Factor of H is -2. Since the BST is right-skewed, we

will perform RR Rotation on node H.

The resultant balance tree is:

2. Insert B, A

BCA 3rd Sem (Data Structure)

123

On inserting the above elements, especially in case of A, the BST becomes

unbalanced as the Balance Factor of H and I is 2, we consider the first node from

the last inserted node i.e. H. Since the BST from H is left-skewed, we will perform

LL Rotation on node H.

The resultant balance tree is:

3. Insert E

BCA 3rd Sem (Data Structure)

124

On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if

we travel from E to I we find that it is inserted in the left subtree of right subtree of

I, we will perform LR Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

BCA 3rd Sem (Data Structure)

125

4. Insert C, F, D

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H

is -2, since if we travel from D to B we find that it is inserted in the right subtree of

left subtree of B, we will perform RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

BCA 3rd Sem (Data Structure)

126

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

5. Insert G

BCA 3rd Sem (Data Structure)

127

On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if

we travel from G to H, we find that it is inserted in the left subtree of right subtree

of H, we will perform LR Rotation on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

BCA 3rd Sem (Data Structure)

128

6. Insert K

On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since

the BST is right-skewed from I to K, hence we will perform RR Rotation on the

node I.

BCA 3rd Sem (Data Structure)

129

The resultant balanced tree after RR rotation is:

7. Insert L

On inserting the L tree is still balanced as the Balance Factor of each node is now

either, -1, 0, +1. Hence the tree is a Balanced AVL tree

BCA 3rd Sem (Data Structure)

130

 B Tree

B Tree is a specialized m-way tree that can be widely used for disk access. A B-

Tree of order m can have at most m-1 keys and m children. One of the main reason

of using B tree is its capability to store large number of keys in a single node and

large key values by keeping the height of the tree relatively small.

A B tree of order m contains all the properties of an M way tree. In addition, it

contains the following properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at

least m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each

node must have m/2 number of nodes.

A B tree of order 4 is shown in the following image.

While performing some operations on B Tree, any property of B Tree may violate

such as number of minimum children a node can have. To maintain the properties

of B Tree, the tree may split or join.

Operations

Searching:

BCA 3rd Sem (Data Structure)

131

Searching in B Trees is similar to that in Binary search tree. For example, if we

search for an item 49 in the following B Tree. The process will something like

following:

1. Compare item 49 with root node 78. since 49 < 78 hence, move to its left

sub-tree.

2. Since, 40<49<56, traverse right sub-tree of 40.

3. 49>45, move to right. Compare 49.

4. match found, return.

Searching in a B tree depends upon the height of the tree. The search algorithm

takes O(log n) time to search any element in a B tree.

Inserting

Insertions are done at the leaf node level. The following algorithm needs to be

followed in order to insert an item into B Tree.

1. Traverse the B Tree in order to find the appropriate leaf node at which the

node can be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the

increasing order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps.

o Insert the new element in the increasing order of elements.

o Split the node into the two nodes at the median.

o Push the median element upto its parent node.

o If the parent node also contain m-1 number of keys, then split it too by

following the same steps.

Example:

BCA 3rd Sem (Data Structure)

132

Insert the node 8 into the B Tree of order 5 shown in the following image.

8 will be inserted to the right of 5, therefore insert 8.

The node, now contain 5 keys which is greater than (5 -1 = 4) keys. Therefore split

the node from the median i.e. 8 and push it up to its parent node shown as follows.

Deletion

BCA 3rd Sem (Data Structure)

133

Deletion is also performed at the leaf nodes. The node which is to be deleted can

either be a leaf node or an internal node. Following algorithm needs to be followed

in order to delete a node from a B tree.

1. Locate the leaf node.

2. If there are more than m/2 keys in the leaf node then delete the desired key

from the node.

3. If the leaf node doesn't contain m/2 keys then complete the keys by taking

the element from eight or left sibling.

o If the left sibling contains more than m/2 elements then push its

largest element up to its parent and move the intervening element

down to the node where the key is deleted.

o If the right sibling contains more than m/2 elements then push its

smallest element up to the parent and move intervening element down

to the node where the key is deleted.

4. If neither of the sibling contain more than m/2 elements then create a new

leaf node by joining two leaf nodes and the intervening element of the parent

node.

5. If parent is left with less than m/2 nodes then, apply the above process on the

parent too.

If the the node which is to be deleted is an internal node, then replace the node

with its in-order successor or predecessor. Since, successor or predecessor will

always be on the leaf node hence, the process will be similar as the node is being

deleted from the leaf node.

Example 1

Delete the node 53 from the B Tree of order 5 shown in the following figure.

BCA 3rd Sem (Data Structure)

134

53 is present in the right child of element 49. Delete it.

Now, 57 is the only element which is left in the node, the minimum number of

elements that must be present in a B tree of order 5, is 2. it is less than that, the

elements in its left and right sub-tree are also not sufficient therefore, merge it with

the left sibling and intervening element of parent i.e. 49.

The final B tree is shown as follows.

Application of B tree

B tree is used to index the data and provides fast access to the actual data stored on

the disks since, the access to value stored in a large database that is stored on a disk

is a very time consuming process.

Searching an un-indexed and unsorted database containing n key values needs O(n)

running time in worst case. However, if we use B Tree to index this database, it

will be searched in O(log n) time in worst case.

BCA 3rd Sem (Data Structure)

135

 B+ Tree

B+ Tree is an extension of B Tree which allows efficient insertion, deletion and

search operations.

In B Tree, Keys and records both can be stored in the internal as well as leaf nodes.

Whereas, in B+ tree, records (data) can only be stored on the leaf nodes while

internal nodes can only store the key values.

The leaf nodes of a B+ tree are linked together in the form of a singly linked lists

to make the search queries more efficient.

B+ Tree are used to store the large amount of data which can not be stored in the

main memory. Due to the fact that, size of main memory is always limited, the

internal nodes (keys to access records) of the B+ tree are stored in the main

memory whereas, leaf nodes are stored in the secondary memory.

The internal nodes of B+ tree are often called index nodes. A B+ tree of order 3 is

shown in the following figure.

Advantages of B+ Tree

1. Records can be fetched in equal number of disk accesses.

2. Height of the tree remains balanced and less as compare to B tree.

3. We can access the data stored in a B+ tree sequentially as well as directly.

4. Keys are used for indexing.

5. Faster search queries as the data is stored only on the leaf nodes.

BCA 3rd Sem (Data Structure)

136

B Tree VS B+ Tree

SN B Tree B+ Tree

1 Search keys can not be repeatedly

stored.

Redundant search keys can be

present.

2 Data can be stored in leaf nodes as

well as internal nodes

Data can only be stored on the

leaf nodes.

3 Searching for some data is a slower

process since data can be found on

internal nodes as well as on the leaf

nodes.

Searching is comparatively faster

as data can only be found on the

leaf nodes.

4 Deletion of internal nodes are so

complicated and time consuming.

Deletion will never be a

complexed process since element

will always be deleted from the

BCA 3rd Sem (Data Structure)

137

leaf nodes.

5 Leaf nodes can not be linked

together.

Leaf nodes are linked together to

make the search operations more

efficient.

Insertion in B+ Tree

Step 1: Insert the new node as a leaf node

Step 2: If the leaf doesn't have required space, split the node and copy the middle

node to the next index node.

Step 3: If the index node doesn't have required space, split the node and copy the

middle element to the next index page.

Example:

Insert the value 195 into the B+ tree of order 5 shown in the following figure.

195 will be inserted in the right sub-tree of 120 after 190. Insert it at the desired

position.

BCA 3rd Sem (Data Structure)

138

The node contains greater than the maximum number of elements i.e. 4, therefore

split it and place the median node up to the parent.

Now, the index node contains 6 children and 5 keys which violates the B+ tree

properties, therefore we need to split it, shown as follows.

Deletion in B+ Tree

Step 1: Delete the key and data from the leaves.

Step 2: if the leaf node contains less than minimum number of elements, merge

down the node with its sibling and delete the key in between them.

Step 3: if the index node contains less than minimum number of elements, merge

the node with the sibling and move down the key in between them.

Example

Delete the key 200 from the B+ Tree shown in the following figure.

BCA 3rd Sem (Data Structure)

139

200 is present in the right sub-tree of 190, after 195. delete it.

Merge the two nodes by using 195, 190, 154 and 129.

Now, element 120 is the single element present in the node which is violating the

B+ Tree properties. Therefore, we need to merge it by using 60, 78, 108 and 120.

Now, the height of B+ tree will be decreased by 1.

BCA 3rd Sem (Data Structure)

140

 Tree Traversals
A traversal is a process that visits all the nodes in the tree. Since a tree is a

nonlinear data structure, there is no unique traversal. We will consider several

traversal algorithms with we group in the following two kinds

 depth-first traversal

 breadth-first traversal

There are three different types of depth-first traversals, :

PreOrder traversal - visit the parent first and then left and right children;

PreOrder - 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

InOrder traversal - visit the left child, then the parent and the right child;

BCA 3rd Sem (Data Structure)

141

 InOrder - 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

PostOrder traversal - visit left child, then the right child and then the

parent;

PostOrder - 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

There is only one kind of breadth-first traversal--the level order traversal. This

traversal visits nodes by levels from top to bottom and from left to right.

BCA 3rd Sem (Data Structure)

142

UNIT IV

BCA 3rd Sem (Data Structure)

143

 Graph Introduction

Graph is a dynamic data structure that is used in many applications like

mathematics, geography, electrical engineering and computer science.

In fact, graph is a kind of tree with or without cycle. Basically graph theory was

originated in Konigsberg Bridge problem by Leonhard Euler in the early 18th

century.

 Graph Definition

Graphs are a set of finite number of vertices and joining edges. A graph is a non –

linear data structure as an element not follow single element, In a graph one

element can follow multiple element and can be followed by multiple element.

Graph data structure can be seen in real life models. For Example, road map of

city. Some time it looks like a tree, as all tree come under the graph data structure

but tree does not create cycle. Thus an acyclic graph is a tree.

Graph Data Structure

Mathematical graphs can be represented in data structure. We can represent a

graph using an array of vertices and a two-dimensional array of edges. Before we

proceed further, let's familiarize ourselves with some important terms −

 Vertex − Each node of the graph is represented as a vertex. In the following

example, the labeled circle represents vertices. Thus, A to G are vertices.

We can represent them using an array as shown in the following image.

Here A can be identified by index 0. B can be identified using index 1 and

so on.

 Edge − Edge represents a path between two vertices or a line between two

vertices. In the following example, the lines from A to B, B to C, and so on

represents edges. We can use a two-dimensional array to represent an array

as shown in the following image. Here AB can be represented as 1 at row 0,

column 1, BC as 1 at row 1, column 2 and so on, keeping other

combinations as 0.

 Adjacency − Two node or vertices are adjacent if they are connected to

each other through an edge. In the following example, B is adjacent to A, C

is adjacent to B, and so on.

BCA 3rd Sem (Data Structure)

144

 Path − Path represents a sequence of edges between the two vertices. In the

following example, ABCD represents a path from A to D.

Basic Operations

Following are basic primary operations of a Graph −

 Add Vertex − Adds a vertex to the graph.

 Add Edge − Adds an edge between the two vertices of the graph.

 Display Vertex − Displays a vertex of the graph

Types of Graph:

 Finite Graphs: A graph is said to be finite if it has finite number of vertices

and finite number of edges.

BCA 3rd Sem (Data Structure)

145

 Infinite Graph: A graph is said to be infinite if it has infinite number of

vertices as well as infinite number of edges.

 Trivial Graph: A graph is said to be trivial if a finite graph contains only one

vertex and no edge.

 Simple Graph: A simple graph is a graph which does not contains more than

one edge between the pair of vertices. A simple railway tracks connecting

different cities is an example of simple graph.

 Multi Graph: Any graph which contain some parallel edges but doesn’t

contain any self-loop is called multi graph. For example A Road Map.

BCA 3rd Sem (Data Structure)

146

 Parallel Edges: If two vertices are connected with more than one edge

than such edges are called parallel edges that is many roots but one

destination.

 Loop: An edge of a graph which join a vertex to itself is called loop or a

self-loop.

Null Graph: A graph of order n and size zero that is a graph which contain n

number of vertices but do not contain any edge.

Complete Graph: A simple graph with n vertices is called a complete graph if the

degree of each vertex is n-1, that is, one vertex is attach with n-1 edges. A

complete graph is also called Full Graph.

BCA 3rd Sem (Data Structure)

147

Pseudo Graph: A graph G with a self loop and some multiple edges is called

pseudo graph.

BCA 3rd Sem (Data Structure)

148

Regular Graph: A simple graph is said to be regular if all vertices of a graph G

are of equal degree. All complete graphs are regular but vice versa is not possible.

Bipartite Graph: A graph G = (V, E) is said to be bipartite graph if its vertex set

V(G) can be partitioned into two non-empty disjoint subsets. V1(G) and V2(G) in

such a way that each edge e of E(G) has its one end in V1(G) and other end in

V2(G).

The partition V1 U V2 = V is called Bipartite of G.

Here in the figure:

V1(G)={V5, V4, V3}

V2(G)={V1, V2}

BCA 3rd Sem (Data Structure)

149

Labelled Graph: If the vertices and edges of a graph are labelled with name, data

or weight then it is called labelled graph. It is also called Weighted Graph.

Digraph Graph: A graph G = (V, E) with a mapping f such that every edge maps

onto some ordered pair of vertices (Vi, Vj) is called Digraph. It is also

called Directed Graph. Ordered pair (Vi, Vj) means an edge between Vi and Vj

with an arrow directed from Vi to Vj.

Here in the figure:

e1 = (V1, V2)

e2 = (V2, V3)

e4 = (V2, V4)

Subgraph: A graph G = (V1, E1) is called subgraph of a graph G(V, E) if V1(G)

is a subset of V(G) and E1(G) is a subset of E(G) such that each edge of G1 has

BCA 3rd Sem (Data Structure)

150

same end vertices as in G.

Connected or Disconnected Graph: A graph G is said to be connected if for any

pair of vertices (Vi, Vj) of a graph G are reachable from one another. Or a graph is

said to be connected if there exist atleast one path between each and every pair of

vertices in graph G, otherwise it is disconnected. A null graph with n vertices is

disconnected graph consisting of n components. Each component consist of one

vertex and no edge.

Cyclic Graph: A graph G consisting of n vertices and n> = 3 that is V1, V2, V3- –

– – – – – – Vn and edges (V1, V2), (V2, V3), (V3, V4)- – – – – – – – — -(Vn, V1)

are called cyclic graph.

BCA 3rd Sem (Data Structure)

151

Application of Graphs:

 Computer Science: In computer science, graph is used to represent networks

of communication, data organization, computational devices etc.

 Physics and Chemistry: Graph theory is also used to study molecules in

chemistry and physics.

 Social Science: Graph theory is also widely used in sociology.

 Mathematics: In this, graphs are useful in geometry and certain parts of

topology such as knot theory.

 Biology: Graph theory is useful in biology and conservation efforts.

 Representation to Graphs

A graph is a data structure that consists of the following two components:

1. A finite set of vertices also called as nodes.

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered

because (u, v) is not the same as (v, u) in case of a directed graph(di-graph). The pair

of the form (u, v) indicates that there is an edge from vertex u to vertex v. The edges

may contain weight/value/cost.

Graphs are used to represent many real-life applications: Graphs are used to

represent networks. The networks may include paths in a city or telephone network

or circuit network. Graphs are also used in social networks like linkedIn, Facebook.

For example, in Facebook, each person is represented with a vertex(or node). Each

node is a structure and contains information like person id, name, gender, and locale.

See this for more applications of graph.

Following is an example of an undirected graph with 5 vertices.

The following two are the most commonly used representations of a graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The

BCA 3rd Sem (Data Structure)

152

choice of graph representation is situation-specific. It totally depends on the type of

operations to be performed and ease of use.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a

graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge

from vertex i to vertex j. Adjacency matrix for undirected graph is always

symmetric. Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] =

w, then there is an edge from vertex i to vertex j with weight w.

The adjacency matrix for the above example graph is:

Pros: Representation is easier to implement and follow. Removing an edge takes

O(1) time. Queries like whether there is an edge from vertex ‘u’ to vertex ‘v’ are

efficient and can be done O(1).

Cons: Consumes more space O(V^2). Even if the graph is sparse(contains less

number of edges), it consumes the same space. Adding a vertex is O(V^2) time.

Please see this for a sample Python implementation of adjacency matrix.

Adjacency List:

An array of lists is used. The size of the array is equal to the number of vertices. Let

the array be an array[]. An entry array[i] represents the list of vertices adjacent to

the ith vertex. This representation can also be used to represent a weighted graph.

The weights of edges can be represented as lists of pairs. Following is the adjacency

list representation of the above graph.

BCA 3rd Sem (Data Structure)

153

 Graph Traversals Shortest Path Algorithm

 Shortest Path Routing

 In shortest path routing algorithm, a graph of the subnet is created.

 In this graph, each node represents the router and each are represents a link

or communication line.

 In order to select the shortest path from a sender to receiver , the algorithm

finds the shortest path between then on the graph.

 Several different metrics can be used to find out the shortest path between

the router.

 One way of measuring path length is the number of hops i.e. this approach

counts the number of intermediate routers that are lying in the path from

sender to receiver.

 Other way is to find the total length of physical channel between a pair of

routers.

 Various other metrics are also possible such as mean queuing and

transmission delay. In this case, the path taking shortest time to deliver the

packets from one router to the other may be chosen i.e. fastest path is the

shortest path rather than the path with the fewest arcs or kilometers.

 The labels on the arcs can be computed as a function of the distance,

bandwidth, average traffic, communication cost, mean queue length,

measured delay etc.

 The algorithm weights various parameters and computer the shortest path

based on any one or combination of criterions stated above.

BCA 3rd Sem (Data Structure)

154

 Dijkstra’s Algorithm

It is a greedy algorithm that solves the single-source shortest path problem for a

directed graph G = (V, E) with nonnegative edge weights, i.e., w (u, v) ≥ 0 for each

edge (u, v) ∈ E.

Dijkstra's Algorithm maintains a set S of vertices whose final shortest - path

weights from the source s have already been determined. That's for all vertices v ∈

S; we have d [v] = δ (s, v). The algorithm repeatedly selects the vertex u ∈ V - S

with the minimum shortest - path estimate, inserts u into S and relaxes all edges

leaving u.

Because it always chooses the "lightest" or "closest" vertex in V - S to insert into

set S, it is called as the greedy strategy.

Analysis: The running time of Dijkstra's algorithm on a graph with edges E and

vertices V can be expressed as a function of |E| and |V| using the Big - O notation.

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q in

an ordinary linked list or array, and operation Extract - Min (Q) is simply a linear

search through all vertices in Q. In this case, the running time is O

(|V2 |+|E|=O(V2).

Example:

Solution:

Step1: Q =[s, t, x, y, z]

We scanned vertices one by one and find out its adjacent. Calculate the distance of

each adjacent to the source vertices.

BCA 3rd Sem (Data Structure)

155

We make a stack, which contains those vertices which are selected after

computation of shortest distance.

Firstly we take's' in stack M (which is a source)

1. M = [S] Q = [t, x, y, z]

Step 2: Now find the adjacent of s that are t and y.

1. Adj [s] → t, y [Here s is u and t and y are v]

Case - (i) s → t

 d [v] > d [u] + w [u, v]

 d [t] > d [s] + w [s, t]

 ∞ > 0 + 10 [false condition]

Then d [t] ← 10

 π [t] ← 5

Adj [s] ← t, y

Case - (ii) s→ y

 d [v] > d [u] + w [u, v]

 d [y] > d [s] + w [s, y]

 ∞ > 0 + 5 [false condition]

 ∞ > 5

Then d [y] ← 5

 π [y] ← 5

By comparing case (i) and case (ii)

 Adj [s] → t = 10, y = 5

 y is shortest

y is assigned in 5 = [s, y]

BCA 3rd Sem (Data Structure)

156

Step 3: Now find the adjacent of y that is t, x, z.

1. Adj [y] → t, x, z [Here y is u and t, x, z are v]

Case - (i) y →t

 d [v] > d [u] + w [u, v]

 d [t] > d [y] + w [y, t]

 10 > 5 + 3

 10 > 8

Then d [t] ← 8

 π [t] ← y

Case - (ii) y → x

 d [v] > d [u] + w [u, v]

 d [x] > d [y] + w [y, x]

 ∞ > 5 + 9

 ∞ > 14

Then d [x] ← 14

 π [x] ← 14

Case - (iii) y → z

 d [v] > d [u] + w [u, v]

 d [z] > d [y] + w [y, z]

 ∞ > 5 + 2

 ∞ > 7

Then d [z] ← 7

 π [z] ← y

By comparing case (i), case (ii) and case (iii)

 Adj [y] → x = 14, t = 8, z =7

z is shortest z is assigned in 7 = [s, z]

BCA 3rd Sem (Data Structure)

157

Step - 4 Now we will find adj [z] that are s, x

1. Adj [z] → [x, s] [Here z is u and s and x are v]

Case - (i) z → x

 d [v] > d [u] + w [u, v]

 d [x] > d [z] + w [z, x]

 14 > 7 + 6

 14 > 13

Then d [x] ← 13

 π [x] ← z

Case - (ii) z → s

 d [v] > d [u] + w [u, v]

 d [s] > d [z] + w [z, s]

 0 > 7 + 7

 0 > 14

∴ This condition does not satisfy so it will be discarded.

Now we have x = 13.

Step 5: Now we will find Adj [t]

Adj [t] → [x, y] [Here t is u and x and y are v]

BCA 3rd Sem (Data Structure)

158

Case - (i) t → x

 d [v] > d [u] + w [u, v]

 d [x] > d [t] + w [t, x]

 13 > 8 + 1

 13 > 9

Then d [x] ← 9

 π [x] ← t

Case - (ii) t → y

 d [v] > d [u] + w [u, v]

 d [y] > d [t] + w [t, y]

 5 > 10

∴ This condition does not satisfy so it will be discarded.

Thus we get all shortest path vertex as

Weight from s to y is 5

Weight from s to z is 7

Weight from s to t is 8

Weight from s to x is 9

These are the shortest distance from the source's' in the given graph.

Disadvantage of Dijkstra's Algorithm:

1. It does a blind search, so wastes a lot of time while processing.

BCA 3rd Sem (Data Structure)

159

2. It can't handle negative edges.

3. It leads to the acyclic graph and most often cannot obtain the right shortest

path.

4. We need to keep track of vertices that have been visited

 Searching
Searching is an operation or a technique that helps finds the place of a given

element or value in the list. Any search is said to be successful or unsuccessful

depending upon whether the element that is being searched is found or not.

Some of the standard searching technique that is being followed in the data

structure is listed below:

1. Linear Search or Sequential Search

2. Binary Search

What is Linear Search?

This is the simplest method for searching. In this technique of searching, the

element to be found in searching the elements to be found is searched

sequentially in the list. This method can be performed on a sorted or an

unsorted list (usually arrays). In case of a sorted list searching starts from

0th element and continues until the element is found from the list or the

element whose value is greater than (assuming the list is sorted in ascending

order), the value being searched is reached. As against this, searching in case

of unsorted list also begins from the 0th element and continues until the

element or the end of the list is reached.

 Linear search is implemented using following steps...

 Step 1 - Read the search element from the user.

 Step 2 - Compare the search element with the first element in the list.

BCA 3rd Sem (Data Structure)

160

 Step 3 - If both are matched, then display "Given element is found!!!" and

terminate the function. Step 4 - If both are not matched, then compare search

element with the next element in the list.

 Step 5 - Repeat steps 3 and 4 until search element is compared with last

element in the list.

 Step 6 - If last element in the list also doesn't match, then display "Element

is not found!!!" and terminate the function.

Let see Example of Linear Search

BCA 3rd Sem (Data Structure)

161

Binary Search Algorithm

Binary search algorithm finds a given element in a list of elements with O(log

n)time complexity where n is total number of elements in the list. The binary

search algorithm can be used with only a sorted list of elements. That means the

binary search is used only with a list of elements that are already arranged in an

order. The binary search can not be used for a list of elements arranged in random

order. This search process starts comparing the search element with the middle

element in the list. If both are matched, then the result is "element found".

Otherwise, we check whether the search element is smaller or larger than the

middle element in the list. If the search element is smaller, then we repeat the same

process for the left sublist of the middle element. If the search element is larger,

then we repeat the same process for the right sublist of the middle element. We

repeat this process until we find the search element in the list or until we left with a

sublist of only one element. And if that element also doesn't match with the search

element, then the result is "Element not found in the list".

Binary search is implemented using following steps...

 Step 1 - Read the search element from the user.

 Step 2 - Find the middle element in the sorted list.

 Step 3 - Compare the search element with the middle element in the sorted

list. Step 4 - If both are matched, then display "Given element is found!!!"

and terminate the function.

 Step 5 - If both are not matched, then check whether the search element is

smaller or larger than the middle element.

 Step 6 - If the search element is smaller than middle element, repeat steps 2,

3, 4 and 5 for the left sublist of the middle element.

 Step 7 - If the search element is larger than middle element, repeat steps 2,

3, 4 and 5 for the right sublist of the middle element.

 Step 8 - Repeat the same process until we find the search element in the list

or until sublist contains only one element.

 Step 9 - If that element also doesn't match with the search element, then

display "Element is not found in the list!!!" and terminate the function.

Example

 Consider the following list of elements and the element to be searched.

BCA 3rd Sem (Data Structure)

162

BCA 3rd Sem (Data Structure)

163

 Sorting
Sorting is the process of arranging a list of elements in a particular order

(Ascending or Descending).

Techniques of Sorting

1. Insertion Sort Algorithm

2. Selection Sort Algorithm

3. Bubble sort

Insertion Sort Algorithm

Insertion sort algorithm arranges a list of elements in a particular order. In insertion

sort algorithm, every iteration moves an element from unsorted portion to sorted

portion until all the elements are sorted in the list.

Step by Step Process

The insertion sort algorithm is performed using the following steps...

 Step 1 - Assume that first element in the list is in sorted portion and all the

remaining elements are in unsorted portion.

 Step 2: Take first element from the unsorted portion and insert that element

into the sorted portion in the order specified.

 Step 3: Repeat the above process until all the elements from the unsorted

portion are moved into the sorted portion.

 Complexity of the Insertion Sort Algorithm:To sort an unsorted list

with 'n' number of elements, we need to make (1+2+3+......+n-1) = (n (n-

1))/2 number of comparisons’ in the worst case. If the list is already sorted

then it requires 'n' number of comparisons’.

 Worst Case : O(n2)

Best Case : Ω(n)

Average Case : Θ(n2)

 Example of Insertion Sort

BCA 3rd Sem (Data Structure)

164

BCA 3rd Sem (Data Structure)

165

Selection Sort Algorithm

Selection Sort algorithm is used to arrange a list of elements in a particular order

(Ascending or Descending). In selection sort, the first element in the list is selected

and it is compared repeatedly with all the remaining elements in the list. If any

element is smaller than the selected element (for Ascending order), then both are

swapped so that first position is filled with the smallest element in the sorted order.

Next, we select the element at a second position in the list and it is compared with

all the remaining elements in the list. If any element is smaller than the selected

element, then both are swapped. This procedure is repeated until the entire list is

sorted.

Step by Step Process

The selection sort algorithm is performed using the following steps...

 Step 1 - Select the first element of the list (i.e., Element at first position in

the list).

 Step 2: Compare the selected element with all the other elements in the list.

 Step 3: In every comparison, if any element is found smaller than the

selected element (for Ascending order), then both are swapped.

 Step 4: Repeat the same procedure with element in the next position in the

list till the entire list is sorted.

Complexity of the Selection Sort Algorithm

 To sort an unsorted list with 'n' number of elements, we need to make ((n-

1)+(n-2)+(n-3)+......+1) = (n (n-1))/2 number of comparisions in the worst

case. If the list is already sorted then it requires 'n' number of comparisions.

 Worst Case : O(n2)

Best Case : Ω(n2)

Average Case : Θ(n2)

BCA 3rd Sem (Data Structure)

166

BCA 3rd Sem (Data Structure)

167

Bubble sort

 Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-

based algorithm in which each pair of adjacent elements is compared and the

elements are swapped if they are not in order. This algorithm is not suitable for

large data sets as its average and worst case complexity are of Ο(n2) where n is the

number of items.

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're

keeping it short and precise.

Bubble sort starts with very first two elements, comparing them to check which

one is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next,

we compare 33 with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

BCA 3rd Sem (Data Structure)

168

We swap these values. We find that we have reached the end of the array. After

one iteration, the array should look like this −

To be precise, we are now showing how an array should look like after each

iteration. After the second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely

sorted.

Now we should look into some practical aspects of bubble sort.

Merge sort

Merge sort is a sorting technique based on divide and conquer technique. With

worst-case time complexity being Ο(n log n), it is one of the most respected

algorithms.

Merge sort first divides the array into equal halves and then combines them in a

sorted manner.

How Merge Sort Works?

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves

unless the atomic values are achieved. We see here that an array of 8 items is

divided into two arrays of size 4.

BCA 3rd Sem (Data Structure)

169

This does not change the sequence of appearance of items in the original. Now we

divide these two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be

divided.

Now, we combine them in exactly the same manner as they were broken down.

Please note the color codes given to these lists.

We first compare the element for each list and then combine them into another list

in a sorted manner. We see that 14 and 33 are in sorted positions. We compare 27

and 10 and in the target list of 2 values we put 10 first, followed by 27. We change

the order of 19 and 35 whereas 42 and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values,

and merge them into a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.

BCA 3rd Sem (Data Structure)

170

QuickSort

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element

as pivot and partitions the given array around the picked pivot. There are many

different versions of quickSort that pick pivot in different ways.

Always pick first element as pivot.

Always pick last element as pivot (implemented below)

Pick a random element as pivot.

Pick median as pivot.

The key process in quickSort is partition (). Target of partitions is, given an array

and an element x of array as pivot, put x at its correct position in sorted array and put

all smaller elements (smaller than x) before x, and put all greater elements (greater

than x) after x. All this should be done in linear time.

 Hash Table

Hash Table is a data structure which stores data in an associative manner. In a hash

table, data is stored in an array format, where each data value has its own unique

index value. Access of data becomes very fast if we know the index of the desired

data.

Thus, it becomes a data structure in which insertion and search operations are very

fast irrespective of the size of the data. Hash Table uses an array as a storage

medium and uses hash technique to generate an index where an element is to be

inserted or is to be located from.

 Hashing

Hashing is a technique to convert a range of key values into a range of indexes of

an array. We're going to use modulo operator to get a range of key values.

Consider an example of hash table of size 20, and the following items are to be

stored. Item are in the (key, value) format.

BCA 3rd Sem (Data Structure)

171

(1,20)

(2,70)

(42,80)

(4,25)

(12,44)

(14,32)

(17,11)

(13,78)

(37,98)

Sr.No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

BCA 3rd Sem (Data Structure)

172

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an

already used index of the array. In such a case, we can search the next empty

location in the array by looking into the next cell until we find an empty cell. This

technique is called linear probing.

Sr.No. Key Hash
Array

Index

After Linear Probing,

Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

BCA 3rd Sem (Data Structure)

173

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

Search − Searches an element in a hash table.

Insert − inserts an element in a hash table.

delete − Deletes an element from a hash table.

Advantage-

Unlike other searching techniques,

Hashing is extremely efficient.

The time taken by it to perform the search does not depend upon the total number

of elements.

It completes the search with constant time complexity O(1).

Hashing Mechanism-

In hashing,

An array data structure called as Hash table is used to store the data items.

Based on the hash key value, data items are inserted into the hash table.

 Types of Hash Functions

There are various types of hash functions available such as-

BCA 3rd Sem (Data Structure)

174

Mid Square Hash Function

Division Hash Function

Folding Hash Function etc

1. Division method

In this the hash function is dependent upon the remainder of a division. For

example:-if the record 52,68,99,84 is to be placed in a hash table and let us take

the table size is 10.

Then:

h(key)=record% table size.

 2=52%10

 8=68%10

 9=99%10

 4=84%10

2. Mid square method

In this method firstly key is squared and then mid part of the result is taken as the

index. For example: consider that if we want to place a record of 3101 and the size

of table is 1000. So 3101*3101=9616201 i.e. h (3101) = 162 (middle 3 digit)

3. Digit folding method

In this method the key is divided into separate parts and by using some simple

operations these parts are combined to produce a hash key. For example: consider

a record of 12465512 then it will be divided into parts i.e. 124, 655, 12. After

dividing the parts combine these parts by adding it.

BCA 3rd Sem (Data Structure)

175

 H(key)=124+655+12

 =791

Characteristics of good hashing function

The hash function should generate different hash values for the similar string.

The hash function is easy to understand and simple to compute.

The hash function should produce the keys which will get distributed, uniformly

over an array.

A number of collisions should be less while placing the data in the hash table.

The hash function is a perfect hash function when it uses all the input data.

 Collision

It is a situation in which the hash function returns the same hash key for more than

one record, it is called as collision. Sometimes when we are going to resolve the

collision it may lead to a overflow condition and this overflow and collision

condition makes the poor hash function.

Collision resolution technique

If there is a problem of collision occurs then it can be handled by apply some

technique. These techniques are called as collision resolution techniques. There are

generally four techniques which are described below.

1) Chaining

It is a method in which additional field with data i.e. chain is introduced. A chain is

maintained at the home bucket. In this when a collision occurs then a linked list is

maintained for colliding data.

Example: Let us consider a hash table of size 10 and we apply a hash function of

H(key)=key % size of table. Let us take the keys to be inserted are 31,33,77,61. In

BCA 3rd Sem (Data Structure)

176

the above diagram we can see at same bucket 1 there are two records which are

maintained by linked list or we can say by chaining method.

2) Linear probing

It is very easy and simple method to resolve or to handle the collision. In this

collision can be solved by placing the second record linearly down, whenever the

empty place is found. In this method there is a problem of clustering which means

at some place block of a data is formed in a hash table.

Example: Let us consider a hash table of size 10 and hash function is defined as

H(key)=key % table size. Consider that following keys are to be inserted that are

56,64,36,71.

In this diagram we can see that 56 and 36 need to be placed at same bucket but by

linear probing technique the records linearly placed downward if place is empty

i.e. it can be seen 36 is placed at index 7.

3) Quadratic probing

This is a method in which solving of clustering problem is done. In this method the

hash function is defined by the H(key)=(H(key)+x*x)%table size. Let us consider

we have to insert following elements that are:-67, 90,55,17,49.

In this we can see if we insert 67, 90, and 55 it can be inserted easily but at case of

17 hash function is used in such a manner that :-(17+0*0)%10=17 (when x=0 it

provide the index value 7 only) by making the increment in value of x. let x =1 so

(17+1*1)%10=8.in this case bucket 8 is empty hence we will place 17 at index 8.

4) Double hashing

It is a technique in which two hash function are used when there is an occurrence

of collision. In this method 1 hash function is simple as same as division method.

But for the second hash function there are two important rules which are

BCA 3rd Sem (Data Structure)

177

It must never evaluate to zero.

Must sure about the buckets, that they are probed.

The hash functions for this technique are:

 H1(key)=key % table size

 H2(key)=P-(key mod P)

Where, p is a prime number which should be taken smaller than the size of a hash

table.

Example: Let us consider we have to insert 67, 90,55,17,49.

In this we can see 67, 90 and 55 can be inserted in a hash table by using first hash

function but in case of 17 again the bucket is full and in this case we have to use

the second hash function which is H2(key)=P-(key mode P) here p is a prime

number which should be taken smaller than the hash table so value of p will be the

7.

i.e. H2(17)=7-(17%7)=7-3=4 that means we have to take 4 jumps for placing the

17. Therefore 17 will be placed at index 1.

 Perfect Hashing

Definition of Perfect Hashing

Perfect hashing is defined as a model of hashing in which any set of n elements can

be stored in a hash table of equal size and can have lookups performed in constant

time. It was specifically invented and discussed by Fredman, Komlos and

Szemeredi (1984) and has therefore been nicknamed as "FKS Hashing".

Definition of Static Hashing

Static Hashing defines another form of the hashing problem which permits users to

accomplish lookups on a finalized dictionary set (that means all objects in the

dictionary are final as well as not changing).

BCA 3rd Sem (Data Structure)

178

Application

Since static hashing needs that the database, its objects and reference remain the

same its applications are limited. Databases which contain information which

experiences rare change are also eligible as it would only require a full rehash of

the whole database on rare occasion. Various examples of this hashing scheme

include sets of words and definitions of specific languages, sets of significant data

for an organization's personnel, etc.

	 Implement two stacks in an array (Multiple Stack)
	 Doubly linked list
	Tree Terminology-
	Example-

	Types of Binary Tree
	1. Strictly Binary Tree

	Advantages of using binary search tree
	Balance Factor (k) = height (left(k)) - height (right(k))
	Complexity
	Operations on AVL tree
	Why AVL Tree?
	AVL Rotations
	1. RR Rotation
	2. LL Rotation
	3. LR Rotation
	4. RL Rotation
	Construct an AVL tree having the following elements

	 B Tree
	Operations
	Searching:
	Deletion

	Application of B tree

	 B+ Tree
	Advantages of B+ Tree
	B Tree VS B+ Tree
	Insertion in B+ Tree
	Example:

	Deletion in B+ Tree
	Example

	Graph Data Structure
	Basic Operations
	Disadvantage of Dijkstra's Algorithm:
	 Searching
	Searching is an operation or a technique that helps finds the place of a given element or value in the list. Any search is said to be successful or unsuccessful depending upon whether the element that is being searched is found or not. Some of the sta...
	1. Linear Search or Sequential Search
	2. Binary Search
	What is Linear Search?
	This is the simplest method for searching. In this technique of searching, the element to be found in searching the elements to be found is searched sequentially in the list. This method can be performed on a sorted or an unsorted list (usually arrays...

