

CLASS:BCA5thSem
Batch: 2018-19

JAVA

Notes as per IKGPTU Syllabus

Name of Faculty: Ms<Jatinderpal Kaur>
Faculty of IT Department, SBS College. Ludhiana

SECTION-A

FUNDAMENTALSOFOBJECT–ORIENTEDPROGRAMMING: -Introduction;Object-

OrientedParadigm;BasicConceptsofObject-Oriented ProgrammingBenefitsofOOP; Applications of OOP.

JAVAEVOLUTION: -JavaHistory;Java Features;How Java Differs from C and C++;Java and

Internet, JavaandWorldWide Web, WebBrowsers;HardwareandSoftwareRequirements;JavaSupport

Systems, Java Environment

OVERVIEW OFJAVALANGUAGE:-Introduction;SimpleJavaProgram;Commentsinjava; An application

with Two Classes; Java Program Structure; Java Tokens; Java Statements;

ImplementingaJavaProgram;JavaVirtualMachine; Command LineArguments;ProgrammingStyle.

CONSTANTS,VARIABLESANDDATATYPES:-Introduction;Constants; Variables;Data Types;

Variables, Constants, Standard DefaultValues.

OPERATORSANDEXPRESSIONS:-Introduction toOperators,Expressions; OperatorPrecedence;

MathematicalFunctions.

DECISION MAKING, BRANCHINGANDLOOPING: - Decision making and Branching

Statements, LoopingStatements,Labeledloops,JumpingStatements

SECTION-B

CLASSES,OBJECTSANDMETHODS:-Introduction;DefiningaClass;Adding Variables; Adding

Variables; Adding Methods; Creating Objects; Accessing

ClassMembers;Constructors;MethodsOverloading;StaticMembers;NestingofMethods;

Inheritance: Extending a Class; Overriding Methods; Final Variables and Methods; Final Classes;

FinalizerMethods;AbstractMethodsandClasses;VisibilityControl.

ARRAYS,STRINGSANDVECTORS:- Arrays;ZaggedArrays:;Strings; String functions:Vectors;

WrapperClasses.

INTERFACES: Introduction;Defining Interfaces;ExtendingInterfaces;Implementing Interfaces;

AccessingInterfaceVariables, ImplementingMultipleInheritenceusingInterfaces.

PACKAGES: Introduction;SystemPackages; Using System Packages; Naming Conventions;

CreatingPackages;AccessingaPackage;UsingaPackage;AddingaClasstoaPackage;HidingClasses.

SECTION-C

MANAGING ERRORSANDEXCEPTIONS:- Introduction;

TypesofErrors;Exceptions;Exception Handling using

Try,CatchandFinallyblock:ThrowingOurOwnExceptions;Using Exceptions for

Debugging.

APPLET PROGRAMMING:- Introduction; How Applets Differ from

Applications;AppletLife Cycle; Creating

 anExecutableApplet;PassingParameters

 toApplets;AligningtheDisplay;MoreaboutHTMLTags;Displayin

gNumericalValues;Getting Input from theUser.

GRAPHICSPROGRAMMING:-Introduction;The GraphicsClass;Lines and

 Rectangles;CirclesandEllipses;

DrawingArcs;DrawingPolygons;LineGraphs;UsingControlLoopsinApplets;Drawing

BarCharts.

SECTION–D

JAVAAWT: -Java AWTpackageContainers;Basic User Interface components;Layouts.

EVENT HANDLING: -Eventdelegation

 Approach;ActionListener;AdjustmentListener,

MouseListener;MouseMotionListener;WindowListener;KeyListener;ItemListener

JAVA I/O HANDLING : I/OFileHandling(InputStream

 &OutputStreams,FileInputStream&FileOutputStream,DataI/PandO/PStreams

,FileClass,ReaderandWriterStreams,RandomAccessFile).

SECTION-A

Introduction of Java
Java is a simple and yet powerful object oriented programming language and it is

in many respects similar to C++. Java originated at Sun Microsystems, Inc. in

1991. It was conceived by James Gosling,It was developed to provide a platform-

independent programming language.It is Pure Object Oriented Language Because

Every Program must be written into Classes.Object Oriented Programming (OOPs) Concept

in Java

Object-oriented programming Paradigm & Concepts: As the name suggests,

Object-Oriented Programming or OOPs refers to languages that uses objects in

programming. Object-oriented programming aims to implement real-world entities

like inheritance, hiding, polymorphism etc in programming. The main aim of OOP

is to bind together the data and the functions that operate on them so that no other

part of the code can access this data except that function.

OOPs Concepts:

 Polymorphism

 Inheritance

 Encapsulation

 Abstraction

 Class

 Object

 Method

 Message Passing

https://www.geeksforgeeks.org/polymorphism-in-java/
https://www.geeksforgeeks.org/inheritance-in-java/
https://www.geeksforgeeks.org/encapsulation-in-java/
https://www.geeksforgeeks.org/abstraction-in-java-2/
https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/methods-in-java/
https://www.geeksforgeeks.org/message-passing-in-java/

1. Polymorphism in Java

 The word polymorphism means having many forms. In simple words, we

can define polymorphism as the ability of a message to be displayed in more

than one form.

 Real life example of polymorphism: A person at the same time can have

different characteristic. Like a man at the same time is a father, a husband,

an employee. So the same person posses different behavior in different

situations. This is called polymorphism.

 Polymorphism is considered as one of the important features of Object

Oriented Programming. Polymorphism allows us to perform a single action

in different ways. In other words, polymorphism allows you to define one

interface and have multiple implementations. The word “poly” means many

and “morphs” means forms, So it means many forms.

 In Java polymorphism is mainly divided into two types:

 Compile time Polymorphism

 Runtime Polymorphism

 Compile time polymorphism: It is also known as static polymorphism.

This type of polymorphism is achieved by function overloading or operator

overloading.

 Runtime polymorphism: It is also known as Dynamic Method Dispatch. It

is a process in which a function call to the overridden method is resolved at

Runtime. This type of polymorphism is achieved by Method Overriding.

2. Inheritance in Java

Inheritance is an important pillar of OOP(Object Oriented

Programming). It is the mechanism in java by which one class is allow

to inherit the features(fields and methods) of another class.
Important terminology:

Super Class: The class whose features are inherited is known as super

class(or a base class or a parent class).
Sub Class: The class that inherits the other class is known as sub

class(or a derived class, extended class, or child class). The subclass can

add its own fields and methods in addition to the superclass fields and
methods.

Reusability: Inheritance supports the concept of “reusability”, i.e. when

we want to create a new class and there is already a class that includes

some of the code that we want, we can derive our new class from the
existing class. By doing this, we are reusing the fields and methods of

the existing class.
3. Encapsulation in Java

Encapsulation is defined as the wrapping up of data under a single unit.

It is the mechanism that binds together code and the data it

manipulates.Other way to think about encapsulation is, it is a protective
shield that prevents the data from being accessed by the code outside

this shield.

 Technically in encapsulation, the variables or data of a class is
hidden from any other class and can be accessed only through any

member function of own class in which they are declared.

 As in encapsulation, the data in a class is hidden from other
classes, so it is also known as data-hiding.

 Encapsulation can be achieved by: Declaring all the variables in

the class as private and writing public methods in the class to set
and get the values of variables.

4. Abstraction in Java

Data Abstraction is the property by virtue of which only the essential

details are displayed to the user. The trivial or the non-essentials units
are not displayed to the user. Ex: A car is viewed as a car rather than its

individual components.

Data Abstraction may also be defined as the process of identifying only
the required characteristics of an object ignoring the irrelevant details.

The properties and behaviors of an object differentiate it from other
objects of similar type and also help in classifying/grouping the objects.

Classes and Objects in Java

Classes and Objects are basic concepts of Object Oriented Programming
which revolve around the real life entities.

5. Class in java
A class is a user defined blueprint or prototype from which objects are
created. It represents the set of properties or methods that are common

to all objects of one type. In general, class declarations can include these

components, in order:

 Modifiers : A class can be public or has default access

(Refer this for details).

 Class name: The name should begin with a initial letter

(capitalized by convention).

 Superclass(if any): The name of the class’s parent (superclass), if

any, preceded by the keyword extends. A class can only extend

(subclass) one parent.

 Interfaces(if any): A comma-separated list of interfaces

implemented by the class, if any, preceded by the keyword
implements. A class can implement more than one interface.

 Body: The class body surrounded by braces, { }.

6. Object in java
It is a basic unit of Object Oriented Programming and represents the
real life entities. A typical Java program creates many objects, which

as you know, interact by invoking methods. An object consists of :

 State : It is represented by attributes of an object. It also reflects

the properties of an object.

 Behavior : It is represented by methods of an object. It also

reflects the response of an object with other objects.

 Identity : It gives a unique name to an object and enables one

object to interact with other objects.

7. Methods in Java

A method is a collection of statements that perform some specific

task and return the result to the caller. A method can perform some
specific task without returning anything. Methods allow us

to reuse the code without retyping the code. In Java, every method

must be part of some class which is different from languages like C,
C++, and Python.

Methods are time savers and help us to reuse the code without

retyping the code.

Method Declaration
In general, method declarations has six components :

 Modifier-: Defines access type of the method i.e. from where it
can be accessed in your application. In Java, there 4 type of the

access specifiers.

 public: accessible in all class in your application.
 protected: accessible within the class in which it is defined

and in its subclass(es)

 private: accessible only within the class in which it is
defined.

 default (declared/defined without using any modifier) :

accessible within same class and package within which its
class is defined.

 The return type : The data type of the value returned by the

method or void if does not return a value.
 Method Name : the rules for field names apply to method names

as well, but the convention is a little different.

 Parameter list : Comma separated list of the input parameters are
defined, preceded with their data type, within the enclosed

parenthesis. If there are no parameters, you must use empty
parentheses ().

 Method body : it is enclosed between braces. The code you need

to be executed to perform your intended operations.

8. Message Passing in Java
Message Passing in terms of computers is communication between

processes. It is a form of communication used in object-oriented

programming as well as parallel programming. Message passing in
Java is like sending an object i.e. message from one thread to another

thread. It is used when threads do not have shared memory and are

unable to share monitors or semaphores or any other shared variables
to communicate. Suppose we consider an example of producer and

consumer, likewise what produce will produce, the consumer will be

able to consume that only. We mostly use Queue to implement
communication between threads.

Applications of Object Oriented Programming

Main application areas of OOP are:

 User interface design such as windows, menu.
 Real Time Systems

 Simulation and Modeling

 Object oriented databases
 AI and Expert System

 Neural Networks and parallel programming

 Decision support and office automation systems etc.

Benefits of OOP:
 It is easy to model a real system as real objects are represented by

programming objects in OOP. The objects are processed by their
member data and functions. It is easy to analyze the user

requirements.

 With the help of inheritance, we can reuse the existing class to
derive a new class such that the redundant code is eliminated and

the use of existing class is extended. This saves time and cost of

program.
 In OOP, data can be made private to a class such that only member

functions of the class can access the data. This principle of data

hiding helps the programmer to build a secure program that can not
be invaded by code in other part of the program.

 With the help of polymorphism, the same function or same
operator can be used for different purposes. This helps to manage

software complexity easily.

 Large problems can be reduced to smaller and more manageable
problems. It is easy to partition the work in a project based on

objects.

 It is possible to have multiple instances of an object to co-exist
without any interference i.e. each object has its own separate

member data and function.

Java History

The history of Java is very interesting. Java was originally
designed for interactive television, but it was too advanced

technology for the digital cable television industry at the time. The

history of java starts with Green Team. Java team members (also
known as Green Team), initiated this project to develop a

language for digital devices such as set-top boxes, televisions, etc.

However, it was suited for internet programming. Later, Java
technology was incorporated by Netscape.

The principles for creating Java programming were "Simple,

Robust, Portable, Platform-independent, Secured, High
Performance, Multithreaded, Architecture Neutral, Object-

Oriented, Interpreted and Dynamic”. Currently, Java is used in

internet programming, mobile devices, games, e-business
solutions, etc. There are given the significant points that describe

the history of Java.

1) James Gosling, Mike Sheridan, and Patrick Naught

on initiated the Java language project in June 1991. The small team

of sun engineers called Green Team.

2) Originally designed for small, embedded systems in electronic
appliances like set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling, and file

extension was .gt.
4) After that, it was called Oak and was developed as a part of the

Green project.

Why Java named "Oak"?
5) Why Oak? Oak is a symbol of strength and chosen as a national

tree of many countries like U.S.A., France, Germany, Romania,

etc.
6) In 1995, Oak was renamed as "Java" because it was already a

trademark by Oak Technologies.

7)Initially developed by James Gosling at Sun
Microsystems (which is now a subsidiary of Oracle Corporation)

and released in 1995.

8) In 1995, Time magazine called Java one of the Ten Best

Products of 1995.

9) JDK 1.0 released in(January 23, 1996).

Java Features

1. Object

In Java, everything is an Object. Java can be easily extended

since it is based on the Object model.

2. Platform Independent

Unlike many other programming languages including C and
C++, when Java is compiled, it is not compiled into platform

specific machine, rather into platform-independent byte code.

This byte code is distributed over the web and interpreted by
the Virtual Machine (JVM) on whichever platform it is being

run on.

3. Simple

Java is designed to be easy to learn. If you understand the

basic concept of OOP Java, it would be easy to master.

4. Secure

With Java's secure feature it enables to develop virus-free,

tamper-free systems. Authentication techniques are based on

public-key encryption.

5. Architecture-neutral

Java compiler generates an architecture-neutral object file

format, which makes the compiled code executable on many
processors, with the presence of Java runtime system.

6. Portable

Being architecture-neutral and having no implementation
dependent aspects of the specification makes Java portable.

The compiler in Java is written in ANSI C with a clean

portability boundary, which is a POSIX subset.

7. Robust

Java makes an effort to eliminate error-prone situations by

emphasizing mainly on compile time error checking and
runtime checking.

8. Multithreaded

With Java's multithreaded feature it is possible to write
programs that can perform many tasks simultaneously. This

design feature allows the developers to construct interactive

applications that can run smoothly.

9. Interpreted

Java byte code is translated on the fly to native machine

instructions and is not stored anywhere. The development
process is more rapid and analytical since the linking is an

incremental and light-weight process.

10. High Performance

With the use of Just-In-Time compilers, Java enables high

performance.
11. DistributedJava is designed for the distributed

environment of the internet.

12. Dynamic

Java is considered to be more dynamic than C or C++ since it

is designed to adapt to an evolving environment. Java

programs can carry an extensive amount of run-time
information that can be used to verify and resolve accesses to

objects at run-time.

Difference Between C ,C++,Java

C Programming Java Programming

It does include the unique statement

keywords sizeof and typedef.

It does not include the C unique statement

keywords sizeof, and typedef.

It contains the data type struct and union. It does not contain the data type struct and union.

It defines the type modifiers keywords

auto, extern, register, signed, and

unsigned.

It does not define the type modifiers keywords

auto, extern, register, signed, and unsigned.

It supports an explicit pointer type. It does not support an explicit pointer type.

It has a preprocessor and therefore we

can use # define, # include, and # ifdef

statements.

It does not have a preprocessor and therefore we

cannot use # define, # include, and # ifdef

statements.

It requires that the functions with no

arguments, with the void keyword

It requires that the functions with no arguments

must be declared with empty parenthesis, not with

the void keyword

C has no operators such as instanceof and
>>>.

Java adds new operators such as instanceof and
>>>.

C adds have a break and continue
statements.

Java adds labeled break and continue statements.

C has no object-oriented programming
features.

Java adds many features required for object-
oriented programming.

C++
JAVA

1.
C++ was developed
by BjarneStroustrup.

Development began in 1979.

Java was developed by James Goslingand

his team. Development began in 1991.

2. C++ is a compiled language. Java is both compiled and interpreted.

3.
C++ supports conditional

compilation and inclusion.

Java does not support conditional

compilation.

 4.
C++ programs are platform

dependent. They need to be

compiled for a particular platform.

Java programs are platform independent.
Java programs are written for Java Virtual

Machine (JVM) and wherever a JVM is

installed, Java program will run without
needing recompilation.

5.
C++ does support operator

overloading. Function overloading

is also available.

Java does not support operator overloading.
However, function overloading is possible.

6. C++ fully support pointers.
Java has restricted support for pointers.
Pointers are supported internally you can

not writer pointer programs.

7. C++ supports structures. Java does not support structures.

 8. C++ supports unions. Java does not support unions.

 9.
C++ does not have built-in support

for threads.
Java fully supports threads.

 10.
C++ supports manual object

managementthrough new and delet
ekeywords.

Java relies on automatic garbage collection.

It does not support destructors the way C++
does.

https://techwelkin.com/compiler-vs-interpreter
https://techwelkin.com/java-and-memory

Java and Internet

Java is strongly associated with the internet because of the first

application program is written in Java was hot Java.
Web browsers to run applets on the internet.

Internet users can use Java to create applet programs & run then locally

using a Java-enabled browser such as hot Java.
Java applets have made the internet a true extension of the storage

system of the local computer.

World wide web and internet

1. World wide web is a collection of information stored on

internet computers.

2. World wide web is an information retrieval system designed
to be used in the internet’s distributed environment.

3. World wide web contains web pages that provide both

information and controls.
4. Web pages contain HTML tags that enable us to find retrieve,

manipulate and display documents world wide.

5. Before Java, the world wide web was limited to the display
of still images & texts.

6. With the help of Java WWW is capable of supporting

animation graphics, games and wide rage special effects.

Web Browsers

The internet is a vast sea of information represented in many formats

and stored on many computers. a browser is a software application used
to locate, retrieve and display content on the World Wide Web,

including Web pages, images, video and other files. As a client/server

model, the browser is the client run on a computer that contacts the Web
server and requests information. The Web server sends the information

back to the Web browser which displays the results.

The browser application retrieves or fetches code, usually written in
HTML (HyperText Markup Language) and/or another language, from a

web server, interprets this code, and renders (displays) it as a Web page

for you to view. on the computer or another Internet-enabled device that
supports a browser.

An example of Web Browsers:

 Hot Java
 Netscape Navigator

 Internet Explorer

 Google Chrome
Java Support System

Web Browser
local computer should be connected to the internet

Web Server
A program that accepts a request from a user and gives output as per the

requirement. Apache TomCat server is one of the major web servers.

Web Browser
The web browser is a software that will allow you to view web pages on

the internet. it is a program that you use to access the Internet. It reads
and knows how to display and download files that are put on servers for

people to read. A program that provides the access of WWW and runs

java applets. Chrome and Firefox are two major web browsers.

HTML
HTML is short for HyperText Markup Language. HTML is used to

create electronic documents (called pages) that are displayed on the
World Wide Web. Each page contains a series of connections to other

pages called hyperlinks. Every web page you see on the Internet is

written using one version of HTML code or another.

Byte Code

Compiled java code that is referred to in the applet tag and transfers to

the user computer.

Proxy Server

An intermediate server between the requesting client work station and

the original server. It is typically implemented for ensuring security.

Mail Server

A mail server (also known as a mail transfer agent or MTA, a mail

transport agent, a mail router or an Internet mailer) is an application that
receives an incoming e-mail from local users (people within the same

domain) and remote senders and forwards outgoing .

Hardware Requirement for Java
Minimum hardware requirement to download Java on your Windows

operating system as follows:
 Minimum Windows 95 software

 IBM-compatible 486 system

 Hard Drive and Minimum of 8 MB memory
 A CD-ROM drive

 Mouse, keyboard and sound card, if required

Software requirement for Java
Nowadays, Java is supported by almost every operating systems.

whether it is a Windows, Macintosh and Unix all supports the Java
application development. So you can download any of the operating

system on your personal computer. Here are the minimum requirement.

 Operating System
 Java SDK or JRE 1.6 or higher

 Java Servlet Container (Free Servlet Container available)

 Supported Database and library that supports the database
connection with Java.

Setting up the environment in Java

 Java is a general-purpose computer programming language that is

concurrent, class-based, object-oriented etc.
Java applications are typically compiled to bytecode that can run

on any Java virtual machine (JVM) regardless of computer

architecture.The latest version is Java 11.

 Below are the environment settings for both Linux and
Windows. JVM, JRE and JDK all three are platform dependent

because configuration of each Operating System is different. But,

Java is platform independent.
 There are few things which must be clear before setting up the

environment

 JDK(Java Development Kit) : JDK is intended for software
developers and includes development tools such as the Java

compiler, Javadoc, Jar, and a debugger.

 JRE(Java Runtime Environment) : JRE contains the parts of the
Java libraries required to run Java programs and is intended for end

users. JRE can be view as a subset of JDK.

 JVM: JVM (Java Virtual Machine) is an abstract machine. It is a
specification that provides runtime environment in which java

bytecode can be executed. JVMs are available for many hardware

and software platforms.

Structure of Java program

Introduction and Simple Program in Java
o class keyword is used to declare a class in java.

o public keyword is an access modifier which representsvisibility. It

means it is visible to all.

o static is a keyword. If we declare any method as static, it is known
as the static method. The core advantage of the static method is

that there is no need to create an object to invoke the static method.

The main method is executed by the JVM, so it doesn't require to
create an object to invoke the main method. So it saves memory.

o void is the return type of the method. It means it doesn't return any

value.
o main() represents the starting point of the program.

o String[] args is used for command line argument. We will learn it
later.

o System.out.println() is used to print statement. Here, System is a

class, out is the object of PrintStream class, println() is the method
of PrintStream class. We will learn about the internal working of

System.out.println statement later.

Example of print message “Hello” in Java

class First

{
 public static void main(String args[])

{

System.out.println(“hello guys”);

}
}

 Save it by name using class name i.e First.java

 To compile Program

 Go to dos window using key window+r=run

 Write Command javac First.java

 Then to Run program Write Command java First

 To run program java First

Output

Hello guys

Using multiple classes in a Java program
A Java program can contain any number of classes. Following Java
program comprises of two classes: Computer and Laptop. Both

classes have their own constructors and a method. In the main

method, we create objects of two classes and call their methods.

Using two classes in Java program

class Computer

{

 void computer_method()

{
 System.out.println("Power gone! Shut down your PC soon...");

 }

class Laptop

 {

 void laptop_method()

{

 System.out.println("99% Battery available.");
 }

}

 public static void main(String[] args)

 {
 Computer my = new Computer();

 Laptop your = new Laptop();

 my.computer_method();

 your.laptop_method();

 }

Structure of Java Program
A Java program involves the following sections:
 Documentation Section

 Package Statement

 Import Statements
 Interface Statement

 Class Definition

 Main Method Class
o Main Method Definition

Detail

Section Description

Documentation Section You can write a comment in this section. Comments are

beneficial for the programmer because they help them

understand the code. These are optional, but we suggest

you use them because they are useful to understand the

operation of the program, so you must write comments

within the program.

Package statement You can create a package with any name. A package is a

group of classes that are defined by a name. That is, if you

want to declare many classes within one element, then you

can declare it within a package. It is an optional part of the

program, i.e., if you do not want to declare any package,

then there will be no problem with it, and you will not get

any errors. Here, the package is a keyword that tells the

compiler that package has been created.

It is declared as:

package package_name;

Import statements This line indicates that if you want to use a class of

another package, then you can do this by importing it

directly into your program.
Example:

import calc.add;

Interface statement Interfaces are like a class that includes a group of method

declarations. It's an optional section and can be used when

programmers want to implement multiple inheritances

within a program.

Class Definition A Java program may contain several class definitions.

Classes are the main and essential elements of any Java

program.

Main Method Class Every Java stand-alone program requires the main method

as the starting point of the program. This is an essential

part of a Java program. There may be many classes in a

Java program, and only one class defines the main

method. Methods contain data type declaration and

executable statements.

Example

Java Tokens

Java Tokens:- A java Program is made up of Classes and Methods and in

the Methods are the Container of the various Statements And a

Statement is made up of Variables, Constants, operators etc .

Tokens are the smallest unit of Program There is Five Types of

Tokens
• Reserve Word or Keywords: Keywords are the pre-defined

identifiers reserved by Java for a specific purpose and used only in a

limited, specific manner.
• Identifier: A Java identifier is the symbolic name that a programmer

gives to various programming elements such as a variables method,

class, array, etc.

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

• Literals: A literal is a constant value that can be classified as integer
literals, string literals, and boolean literals.

• Operators: An operator is a special symbol that tells the compiler to

perform a specific mathematical or logical operation on one or more
operands where an operand can be an expression.

• Separators: Separators are the lines that are used to virtual group

related items together.

Java Statements
Statements are similar to sentences in the English language. A sentence

forms a complete idea which can include one or more clauses. Likewise,

a statement in Java forms a complete command to be executed and can
include one or more expressions.

In simpler terms, a Java statement is just an instruction that explains

what should happen.
Types of Java Statements

Java supports three different types of statements:

 Expression statements change values of variables, call methods,
and create objects.

 Declaration statements declare variables.

 Control-flow statements determine the order that statements are
executed. Typically, Java statements parse from the top to the

bottom of the program. However, with control-flow statements,

that order can be interrupted to implement branching or looping so
that the Java program can run particular sections of code based

on certain conditions.

JVM

JVM is a engine that provides runtime environment to drive the

Java Code or applications. It converts Java bytecode into machines

language. JVM is a part of JRE(Java Run Environment). It
stands for Java Virtual Machine

 In other programming languages, the compiler produces machine
code for a particular system. However, Java compiler produces

code for a Virtual Machine known as Java Virtual Machine.

 First, Java code is complied into bytecode. This bytecode gets
interpreted on different machines

 Between host system and Java source, Bytecode is an intermediary

language.
 JVM is responsible for allocating memory space.

Command line argument in Java
The command line argument is the argument passed to a program at the
time when you run it. To access the command-line argument inside a

java program is quite easy, they are stored as string in String array

passed to the args parameter of main() method.
Example

class cmd

{
 public static void main(String[] args)

 {

 for(int i=0;i<args.length;i++)
 {

System.out.println(args[i]);

 }
 }

}

Execute this program as java cmd 10 20 30

10

20
30

Constants
Constants in java are fixed values those are not changed during the
Execution of program java supports several types of Constants those are:

Integer Constants
Integer Constants refers to a Sequence of digits which Includes only

negative or positive Values and many other things those are as follows:-
1. An Integer Constant must have at Least one Digit.

2. it must not have a Decimal value.

3. it could be either positive or Negative.
4. if no sign is Specified then it should be treated as Positive.

5. No Spaces and Commas are allowed in Name.

Real Constants

1. A Real Constant must have at Least one Digit.

2. it must have a Decimal value.

3. it could be either positive or Negative.
4. if no sign is Specified then it should be treated as Positive.

5. No Spaces and Commas are allowed in Name.
6. Like 251, 234.890 etc are Real Constants.

In The Exponential Form of Representation the Real Constant is
Represented in the two Parts The part before appearing e is called

mantissa whereas the part following e is called Exponent.

7. In Real Constant The Mantissa and Exponent Part should be
Separated by letter e.

8. The Mantissa Part have may have either positive or Negative Sign.

9. Default Sign is Positive.

Single Character Constants
A Character is Single Alphabet a single digit or a Single Symbol that is

enclosed within Single inverted commas.
Like 'S' ,'1' etc are Single Character Constants.

String Constants
String is a Sequence of Characters Enclosed between double Quotes

These Characters may be digits ,Alphabets Like "Hello" , "1234" etc.

Backslash Character Constants
Java Also Supports Backslash Constants those are used in output

methods For Example \n is used for new line Character These are also
Called as escape Sequence or backslash character Constants For Ex:

\t For Tab (Five Spaces in one Time)
\b Back Space etc.

Variables
A variable is used for storing a value either a number or a character and

a variable also vary its value means it may change his value Variables
are used for given names to locations in the Memory of Computer where

the different constants are stored. These locations contain Integer ,Real

or Character Constants.

Data Types
Every variable has a data type which denotes the type of data which a

variable will hold There are many built in data types in data types those
are called as Primitives data types or built in data types and there are

Also Some data types those are defined by user defined types which are

also called as Non-Primitives data types.

Data types are means to identify the type of data and associated

operations for handling it. Java data types are of two types:
1. Primitive (Intrinsic)

2. Non-Primitive (Derived)

Integer types

These types Can hold whole numbers such as 123, -90 etc .The Size of
the Values depends on the Integer data type or Range of the Integer data

type that java supports But Always Remember java doesn't supports

signed , unsigned data types But Range integer data type is increased
from 2 bytes to four bytes.

Integer Types, Size and Range of Values.

Reserved Word Data Types Size Range of Values

byte Byte length Integer 1 byte -28 to 27 -1

short Short Integer 2 bytes -216 to 215 -1

int Integer 4 bytes -232 to 231 -1

long Long Integers 8 bytes -264 to 263 -1

Floating data types

The Floating data types contains whole numbers and also Decimal

Values Those are also Called as trhe3 Real Constants or Fractional

Numbers These Supports Special Types of values Known as NAN or not
a number which is used for representing the result when we divide a

number by zero or when Actual result is not produced.

Floating-point Types, Size and Range of Values.

Reserved

Word
Data Types Size

Range of

Values

float Single Precision 4 byte -232 to 231 -1

double
Real number with double
precision

8
bytes

-234 to 263 -1

Character type

Java provides a character data type called Char For Storing a Character

value and in java char has 2 bytes for holding a Single Character.

Boolean data type

This is Also Special data type used when the Execution is depend on

Some Conditions Either they are true or False Boolean is a Special data
type Which Returns Result only in true or False.
Default Value of Data Types in Java :

Data Type Default Value (for fields)

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char ‘u0000’

String (or any object) null

boolean false

Live Example : Default value of Data Type

Sample Program that will illustrate Default Value Stored in Each

Primitive Data Type Variable
public class DefaultValue {

staticbooleanbool;

static byte by;
staticcharch;

staticdouble d;

staticfloat f;
staticinti;

staticlong l;

staticshortsh;
static String str;

 public staticvoid main(String[] args) {
System.out.println("Bool :" + bool);

System.out.println("Byte :" + by);

System.out.println("Character:" + ch);
System.out.println("Double :" + d);

System.out.println("Float :" + f);

System.out.println("Integer :" + i);
System.out.println("Long :" + l);

System.out.println("Short :" + sh);

System.out.println("String :" + str);
 }

}

Output :

[468×60]

Bool :false

Byte :0
Character:

Double :0.0

Float :0.0

Integer :0
Long :0

Short :0

String :null

Java Operators

Java provides a rich set of operators to manipulate variables. We can

divide all the Java operators into the following groups −
 Arithmetic Operators(+,-,*,/,%)

 Relational Operators (<,>,>=,<=,==,!=)
 Bitwise Operators(>,<)

 Logical Operators(&&,||,!)

 Assignment Operators(=)

The Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same

way that they are used in algebra. The following table lists the arithmetic
operators −

Assume integer variable A holds 10 and variable B holds 20, then −

Operator Description Example

+ (Addition)
Adds values on either side of the operator. A + B

will give

30

- (Subtraction)
Subtracts right-hand operand from left-hand
operand.

A - B
will give

-10

* (Multiplication)
Multiplies values on either side of the
operator.

A * B
will give

200

/ (Division)
Divides left-hand operand by right-hand
operand.

B / A
will give

2

% (Modulus)
Divides left-hand operand by right-hand
operand and returns remainder.

B % A
will give

0

++ (Increment)
Increases the value of operand by 1. B++

gives 21

-- (Decrement)
Decreases the value of operand by 1. B-- gives

19

The Relational Operators

There are following relational operators supported by Java language.

Operator Description Example

== (equal to)

Checks if the values of two operands are

equal or not, if yes then condition becomes
true.

(A == B) is

not true.

!= (not equal

to)

Checks if the values of two operands are

equal or not, if values are not equal then
condition becomes true.

(A != B) is

true.

> (greater

than)

Checks if the value of left operand is greater

than the value of right operand, if yes then
condition becomes true.

(A > B) is

not true.

< (less than)
Checks if the value of left operand is less

than the value of right operand, if yes then

(A < B) is

true.

condition becomes true.

>= (greater

than or equal

to)

Checks if the value of left operand is greater

than or equal to the value of right operand,

if yes then condition becomes true.

(A >= B) is
not true.

<= (less than
or equal to)

Checks if the value of left operand is less

than or equal to the value of right operand,

if yes then condition becomes true.

(A <= B) is
true.

-The Bitwise Operators

Java defines several bitwise operators, which can be applied to the

integer types, long, int, short, char, and byte.
Bitwise operator works on bits and performs bit-by-bit operation.

Assume if a = 60 and b = 13; now in binary format they will be as

follows −
a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001
~a = 1100 0011

The following table lists the bitwise operators

Operator Description Example

& (bitwise and)
Binary AND Operator copies a bit to the result if
it exists in both operands.

(A & B) will give 12 which is
0000 1100

| (bitwise or)
Binary OR Operator copies a bit if it exists in
either operand.

(A | B) will give 61 which is
0011 1101

^ (bitwise
XOR)

Binary XOR Operator copies the bit if it is set in
one operand but not both.

(A ^ B) will give 49 which is
0011 0001

~ (bitwise Binary Ones Complement Operator is unary and (~A) will give -61 which is 1100

compliment) has the effect of 'flipping' bits. 0011 in 2's complement form
due to a signed binary number.

<< (left shift)
Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

A << 2 will give 240 which is
1111 0000

>> (right shift)
Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand.

A >> 2 will give 15 which is
1111

>>> (zero fill
right shift)

Shift right zero fill operator. The left operands
value is moved right by the number of bits
specified by the right operand and shifted values
are filled up with zeros.

A >>>2 will give 15 which is
0000 1111

The Logical Operators

The following table lists the logical operators

Operator Description Example

&& (logical and)

Called Logical AND operator. If

both the operands are non-zero, then

the condition becomes true.

(A && B) is false

|| (logical or)

Called Logical OR Operator. If any

of the two operands are non-zero,

then the condition becomes true.

(A || B) is true

! (logical not)

Called Logical NOT Operator. Use

to reverses the logical state of its

operand. If a condition is true then
Logical NOT operator will make

false.

!(A && B) is true

The Assignment Operators

Following are the assignment operators supported by Java language

Operator Description Example

=

Simple assignment operator. Assigns values from
right side operands to left side operand.

C = A +
B will

assign

value of
A + B

into C

+=

Add AND assignment operator. It adds right
operand to the left operand and assign the result to

left operand.

C += A is
equivalent

to C = C

+ A

-=

Subtract AND assignment operator. It subtracts

right operand from the left operand and assign the

result to left operand.

C -= A is

equivalent

to C = C
– A

*=

Multiply AND assignment operator. It multiplies
right operand with the left operand and assign the

result to left operand.

C *= A is
equivalent

to C = C

* A

/= Divide AND assignment operator. It divides left

operand with the right operand and assign the result

to left operand.

C /= A is

equivalent

to C = C /
A

%=

Modulus AND assignment operator. It takes

modulus using two operands and assign the result to
left operand.

C %= A

is
equivalent

to C = C

% A

<<= Left shift AND assignment operator.
C <<= 2

is same as

C = C <<
2

>>= Right shift AND assignment operator.

C >>= 2

is same as
C = C >>

2

&= Bitwise AND assignment operator.
C &= 2 is
same as C

= C & 2

^=
bitwise exclusive OR and assignment operator. C ^= 2 is

same as C

= C ^ 2

|=

bitwise inclusive OR and assignment operator. C |= 2 is

same as C

= C | 2

Java Math Functions

 The java.lang.Math class provides us access to many of these functions.

The table below lists some of the more common among these. (There
are more than just these in java.lang.Math, however -- one should

consult the java API for the whole list.)

Method Description

Math.abs()
It will return the Absolute value of the given value.

Math.max()
It returns the Largest of two values.

Math.min()
It is used to return the Smallest of two values.

Math.round()
It is used to round of the decimal numbers to the nearest value.

Math.sqrt()
It is used to return the square root of a number.

https://www.javatpoint.com/java-math-abs-method
https://www.javatpoint.com/java-math-max-method
https://www.javatpoint.com/java-math-min-method
https://www.javatpoint.com/java-math-round-method
https://www.javatpoint.com/java-math-sqrt-method

Math.cbrt()
It is used to return the cube root of a number.

Math.pow()
It returns the value of first argument raised to the power to second argument.

Math.signum()
It is used to find the sign of a given value.

Math.ceil()
It is used to find the smallest integer value that is greater than or equal to the
 argument or mathematical integer.

Decision Making
Decision Making in Java (if, if-else, switch, break, continue, jump)
A programming language uses control statements to control the flow of

execution of program based on certain conditions. These are used to

cause the flow of execution to advance and branch based on changes to
the state of a program.

Java’s Selection statements:
 if
 if-else

 nested-if

 if-else-if ladder
 switch-case

These statements allow you to control the flow of your program’s
execution based upon conditions known only during run time.

1) if: if statement is the most simple decision making statement.

It is used to decide whether a certain statement or block of
statements will be executed or not i.e if a certain condition is

true then a block of statement is executed otherwise not.

Syntax:
if(condition)

{

 // Statements to execute if
 // condition is true

}

https://www.javatpoint.com/java-math-cbrt-method
https://www.javatpoint.com/java-math-pow-method
https://www.javatpoint.com/java-math-signum-method
https://www.javatpoint.com/java-math-ceil-method

Flow Chart

// Java program to illustrate If statement

class IfDemo
{

 public static void main(String args[])

 {
 inti = 10;

 if (i> 0)
{

 System.out.println("number is +ve");

 }

 }

}
Output:

Number is +ve

2)if-else: The if statement alone tells us that if a condition is true it will
execute a block of statements and if the condition is false it won’t. But

what if we want to do something else if the condition is false. Here

comes the else statement. We can use the else statement with if
statement to execute a block of code when the condition is false.

Syntax:

if (condition)
{

 // Executes this block if

 // condition is true
}

else

{
 // Executes this block if

 // condition is false
}

// Java program to illustrate if-else statement
class IfElseDemo

{

 public static void main(String args[])
 {

 int i = 10;

 if (i>0)

 System.out.println("Number is +ve");
 else

 System.out.println("Number is -ve");

 }
}

Output:

Number is +ve
3)nested-if: A nested if is an if statement that is the target of another if

or else. Nested if statements means an if statement inside an if statement.
Yes, java allows us to nest if statements within if statements. i.e, we can

place an if statement inside another if statement.

Syntax:
if (condition1)

{

 // Executes when condition1 is true
 if (condition2)

 {

 // Executes when condition2 is true
 }

}

// Java program to illustrate nested-if statement

Write program to display days of week according to input 1-7
Class a

{
 Public static void main(String args[])

 {

 int a=1;
 if(a==1)

 {

 System.out.print(“today is Sunday”);
}

If(a==2)

{
 System.out.print(“today is Monday”);

}

 If(a==3)
{

 System.out.print(“today is Tuesday”);

}
 If(a==4)

{

 System.out.print(“today is Wednesday”);
}

 If(a==5)

{
 System.out.print(“today is Thursday”);

}

 If(a==6)
{

 System.out.print(“today is Friday”);
}

 If(a==7)

{
 System.out.print(“today is Saturday”);

}

}

}

Output:

Today is sunday

4)if-else-if ladder: Here, a user can decide among multiple
options.The if statements are executed from the top down. As soon as

one of the conditions controlling the if is true, the statement

associated with that if is executed, and the rest of the ladder is
bypassed. If none of the conditions is true, then the final else

statement will be executed.

if (condition)
 statement;

else if (condition)

 statement;
.

.

else
 statement;

// Java program to illustrate if-else-if ladder

Write program to display days of week according to input 1-7
Class a

{

 Public static void main(String args[])
 {

 int a=1;

 if(a==1)

 {
 System.out.print(“today is Sunday”);

}

If(a==2)
{

 System.out.print(“today is Monday”);

}
else If(a==3)

{

 System.out.print(“today is Tuesday”);
}

else If(a==4)

{
 System.out.print(“today is Wednesday”);

}

else If(a==5)
{

 System.out.print(“today is Thursday”);

}
else If(a==6)

{

 System.out.print(“today is Friday”);
}

else If(a==7)

{
 System.out.print(“today is Saturday”);

}
Else

{

System.out.print(“wrong key”);
}

}
}

Output:
Today is sunday

5)switch-case The switch statement is a multiway branch statement.

It provides an easy way to dispatch execution to different parts of
code based on the value of the expression.

Syntax:

switch (expression)
{

 case value1:

 statement1;
 break;

 case value2:

 statement2;
 break;

 .

 .
 case valueN:

statementN;

 break;
 default:

statementDefault;

}

// Java program to illustrate switch-case
class SwitchCaseDemo

{

 public static void main(String args[])
 {

 inti = 9;

 switch (i)
 {

 case 0:

 System.out.println("i is zero.");

 break;
 case 1:

 System.out.println("i is one.");

 break;
 case 2:

 System.out.println("i is two.");

 break;
 default:

 System.out.println("i is greater than 2.");

 }
 }

}

 Output:
 i is greater than 2.

6)jump: Java supports three jump statement: break,

continue and return. These three statements transfer control to
other part of the program.

1. Break: In Java, break is majorly used for:

 Terminate a sequence in a switch statement (discussed
above).

 To exit a loop.

 Used as a “civilized” form of goto.

Using break to exit a Loop
Using break, we can force immediate termination of a loop, bypassing

the conditional expression and any remaining code in the body of the
loop.

Note: Break, when used inside a set of nested loops, will only break out
of the innermost loop.

Loops in Java
Looping in programming languages is a feature which facilitates the

execution of a set of instructions/functions repeatedly while some

condition evaluates to true.
Java provides three ways for executing the loops. While all the ways

provide similar basic functionality, they differ in their syntax and

condition checking time.
1. while loop: A while loop is a control flow statement that allows

code to be executed repeatedly based on a given Boolean

condition. The while loop can be thought of as a repeating if
statement.

Syntax :
2. while (boolean condition)
3. {

4. loop statements...

5. }
Flowchart:

1.

// Java program to illustrate while loop

class whileLoopDemo

{
 public static void main(String args[])

 {
 int i;

 i=1;

 while(i<=10)
{

 System.out.println(i);

 i++;
}

}}

 }

 }
}

2. Output:
3. Value of x:1
4. Value of x:2

5. Value of x:3

6. Value of x:4
7. for loop: for loop provides a concise way of writing the loop

structure. Unlike a while loop, a for statement consumes the

initialization, condition and increment/decrement in one line
thereby providing a shorter, easy to debug structure of looping.

Syntax:
8. for (initialization condition; testing condition;
9. increment/decrement)

10. {

11. statement(s)
}

Flowchart:

// Java program to illustrate for loop.

class forLoopDemo
{

 public static void main(String args[])

 {
 for(i=1;i<=10;i++)

{

 System.out.println(i);
 }

}

Output:
Value of x:2

Value of x:3
Value of x:4

3)do while: do while loop is similar to while loop with only difference

that it checks for condition after executing the statements, and therefore
is an example of Exit Control Loop.

Syntax:
do
{

 statements..

}
while (condition);

Flowchart:

// Java program to illustrate do-while loop

class dowhileloopDemo
{

 public static void main(String args[])

 {
 int x = 21;

 do

 { do
{

 System.out.println(i);

 i++;
} while(i<=10);

 }

 while (x < 20);
 }

}

Output:
Value of x: 21

4)Labelled Loop(2 marks)

According to nested loop, if we put break statement in inner loop,
compiler will jump out from inner loop and continue the outer loop

again. What if we need to jump out from the outer loop using break

statement given inside inner loop? The answer is, we should
define lable along with colon(:) sign before loop.

Syntax of Labelled loop

Example with labelled loop

 //WithLabelledLoop.java

 class WithLabelledLoop

 {

 public static void main(String args[])
 {

inti,j;

loop1: for(i=1;i<=10;i++)

 {

System.out.println();

 }}

 Output :

 1 2 3 4 5

Comments in Java
Java Comments

Comments can be used to explain Java code, and to make it more readable. It can

also be used to prevent execution when testing alternative code.

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by Java (will not be

executed).

 /*comments */

// This is a comment

System.out.println("Hello World");

Using multiple classes in a Java program

A Java program may contain any number of classes. The following program

comprises of two classes: Computer and Laptop, both the classes have their

constructors and a method. In the main method, we create objects of two classes

and call their methods.

Using two classes in Java program

class Computer {

 Computer() {

 System.out.println("Constructor of Computer class.");

 }

 void computer_method() {

 System.out.println("Power gone! Shut down your PC soon...");

 }

 public static void main(String[] args) {

 Computer my = new Computer();

 Laptop your = new Laptop();

 my.computer_method();

 your.laptop_method();

 }

}

class Laptop {

 Laptop() {

 System.out.println("Constructor of Laptop class.");

 }

 void laptop_method() {

 System.out.println("99% Battery available.");

 }

}

Section-B

CLASSES,OBJECTSANDMETHODS:-Introduction;DefiningaClass;Adding

Variables; Adding Variables; Adding Methods; Creating Objects; Accessing

ClassMembers;Constructors;MethodsOverloading;StaticMembers;NestingofMetho

ds;

Inheritance: Extending a Class; Overriding Methods; Final Variables and Methods;

Final Classes; FinalizerMethods;AbstractMethodsandClasses;VisibilityControl.

Classes and objects in Java

1.A class is nothing but a blueprint or a template for creating different objects

which defines its properties and behaviors. Java class objects exhibit the properties

and behaviors defined by its class. A class can contain fields and methods to

describe the behavior of an object.

Syntax

 Class classname

{

 Methods(functions)

 variables

}

2.Methods are nothing but members of a class that provide a service for an object

or perform some business logic. Java fields and member functions names are case

sensitive. Current states of a class’s corresponding object are stored in the object’s

instance variables. Methods define the operations that can be performed in java

programming.

Returntype method name (parameterlist)

{

 Block of code

}

3.Java object

object is an instance of a class created using a new operator. The new operator

returns a reference to a new instance of a class. This reference can be assigned to a

reference variable of the class. The process of creating objects from a class is

called instantiation. An object encapsulates state and behavior.

Syntax

 Classname objectname=new classname();

4.Accessing class methods and variables

 Object.methodname();

 Object.variablename;

Example to add two number

 class MyClass

{

 int x,y,z;

 void get()

{

 x = 5;

 y=2;

}

void disp()

{

 z=x+y;

System.out.print(“sum is “+z);

}}

Class mainmethod

{

 Public static void main(String args[])

 {

 Myclass ob=Myclass();

 ob.get();

ob.disp();

}}

Output : sum is 7

Java Constructors
A constructor in Java is a special method that is used to initialize objects. The

constructor is called when an object of a class is created. It can be used to set initial

values for object attributes:

Types of Constructor

1.Default Constructor

2.Parameterized Constructor

1.Default Constructor:A constructor without Parameters .it have same class

name and have no return type

Example

class MyClass

{

 Int x,y,z;

MyClass()

{

 x = 5;

 y=2;

}

Void disp()

{

int z=x+y;

System.out.print(z);

}}

Class mainmethod

{

 Public static void main(String args[])

 {

 Myclass ob=Myclass();

Ob.disp();

}}

2.Parameterized Constructor:A constructor have Parameters .it have same

class name and have no return type

class MyClass

{

 Int x,y,z;

MyClass()

{

 X1=x;

 Y1=y;

}

Void disp()

{

int z=x+y;

System.out.print(z);

}}

Class mainmethod

{

 Public static void main(String args[])

 {

 Myclass ob=Myclass(5,4);

Ob.disp();

}}

Method Overloading
With method overloading, multiple methods can have the same name with

different parameters:

int myMethod(int x)

float myMethod(float x)

double myMethod(double x, double y)

Example

class DisplayOverloading2

{

 public void disp(char c)

 {

 System.out.println(c);

 }

 public void disp(int c)

 {

 System.out.println(c);

 }

}

class Sample2

{

 public static void main(String args[])

 {

 DisplayOverloading2 obj = new DisplayOverloading2();

 obj.disp('a');

 obj.disp(5);

 }

}

Output:

a

5

Java static method
If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an instance of

a class.

o A static method can access static data member and can change the value of

it.

Example of static method

static void add(int a,int b)

{

 int c;

c=a+b; 5+4

System.out.println(“sum is”+c);

}

Class test

{

 Public static void main(String args[])

 {

 add(5,4);

}}

Output

Sum is 9

Nesting of Methods in java

A method of a class can be called only by an object of that class using the dot

operator. So, there is an exception to this. A method can be called by using only its

name by another method of the same class that is called Nesting of Methods.

Program:

Class compare

{

 int a,b;

 void get()

{

 a=2;

 b=3;

}

int comp()

{

 if(a>b)

{

 return(a);

}

else

{

 return(b);

}}

void disp()

{

System.out.println(comp()); //nesting of method

}

Class test

{

 Public static void main(String args[])

{

 compare ob=new compare();

ob.get();

ob.disp();

}

Output

3

Inheritance: Extending a Class; Overriding Methods; Final Variables and Methods;

Final Classes; FinalizerMethods;AbstractMethodsandClasses;VisibilityControl.

Inheritance in Java

It is a mechanism in which one object acquires all the properties and behaviors of a

parent object. It is an important part of OOPs (Object Oriented programming

system).

create new classes that are built upon existing classes. When you inherit from an

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

existing class, you can reuse methods and fields of the parent class.

Syntax

1. class Subclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from

an existing class. The meaning of "extends" is to increase the functionality.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single,

multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported through

interface only. We will learn about interfaces later.

Single Level

When a class inherits another class, it is known as a single inheritance. In the

example given below, Dog class inherits the Animal class, so there is the single

inheritance.

Class a

{

 int a,b,c;

 void get()

{

 a=2;

 b=3;

}

void disp()

{

 c=a+b;

 System.out.print(“sum is “+c);

}

}

class b extends a

{

 int d

void disp2()

{

 d=a-b;

System.out.println(“Subtraction is “+d);

}

}

class test

{

 public static void main(String args[])

 {

 b ob=new b();

 ob.get();

ob.disp();

ob.disp2();

}

Output

Sum is 5

Subtraction is -1

Method Overriding

If subclass (child class) has the same method as declared in the parent class, it is

known as method overriding in Java.

Usage of Java Method Overriding

o Method overriding is used to provide the specific implementation of a

method which is already provided by its superclass.

o Method overriding is used for runtime polymorphism

class Vehicle

{

 void run()

{

System.out.println("Vehicle is running");

}

}

class Bike2 extends Vehicle

{

 void run()

{

System.out.println("Bike is running safely");

}

}

Class test

{

 public static void main(String args[])

{

 Bike2 obj = new Bike2();

Vehicle ob=new Vehicle();

ob.run();

 obj.run();

 }

}

Output

Vehicle is running

Bike is running safely

Visibility Controls

Private :Not access by all classes

Public :Accessed by all classes

Protected :only 1 time inheritance

The final keyword in java is used to restrict the user. The java final keyword can

be used in many context. Final can be:

1. variable

2. method

3. class

final variable

Variables defined in an interface are implicitly final. You can’t change value of a

final variable (is a constant).

Example

 final int a=10;

Final method

. A final method can’t be overridden when its class is inherited. Any attempt to

override or hide a final method will result in a compiler error.

 Example

 final void get()

{

}

final class

A final class can’t be extended i.e., final class may not be subclassed. This is done

for security reasons with basic classes like String and Integer.

final class classname

{

}

Finalize method

Java Object finalize() Method

Finalize() is the method of Object class. This method is called just before an object

is garbage collected. finalize() method overrides to dispose system resources,

perform clean-up activities and minimize memory leaks.

Syntax finalize()

 {

 }

Difference between Method Overloading and Method Overriding

No. Method Overloading Method Overriding

1) Method overloading is

used to increase the

readability of the

program.

Method overriding is

used to provide the

specific

implementation of the

method that is already

provided by its super

class.

2) Method overloading is

performed within class.

Method overriding

occurs in two

classes that have IS-A

(inheritance)

relationship.

3) In case of method

overloading, parameter

must be different.

In case of method

overriding, parameter

must be same.

4) Method overloading is

the example of compile

time polymorphism.

Method overriding is

the example of run

time polymorphism.

5) In java, method

overloading can't be

performed by changing

return type of the method

only. Return type can be

same or different in

method overloading. But

you must have to change

the parameter.

Return type must be

same or covariant in

method overriding.

Java Abstract Classes and Methods(Dynamic Dispatch

method)

Data abstraction is the process of hiding certain details and showing only essential

information to the user.

Abstraction can be achieved with either abstract classes or interfaces (which you

will learn more about in the next chapter).

The abstract keyword is a non-access modifier, used for classes and methods:

 Abstract class: is a restricted class that cannot be used to create objects (to

access it, it must be inherited from another class).

 Abstract method: can only be used in an abstract class, and it does not have

a body. The body is provided by the subclass (inherited from).

An abstract class can have both abstract and regular methods:

abstract class Animal

 {

 public abstract void animalSound();

}

class Pig extends Animal

{

 public void animalSound()

{

 System.out.println("This is pig class");

 }

}

class MyMainClass

 {

 public static void main(String[] args)

 {

 Pig myPig = new Pig();

 myPig.animalSound();

 }

}

Output

This is pig class

Visibility Controls in java

Arrays in Java

Arrays are used to store multiple values in a single variable, instead of declaring

separate variables for each value.

Types of Arrays

 One-Dimensional =It have 1 subscript value

 Two-Dimensional =It have 2 subscript value

 Multi-Dimensional =It have more than one subscript value

Declare

 Datatype arrayname[];

 int a[]=new a{1,2,3,4,5}

Program store Elements in array using 1D array

 class JavaProgram

{

 public static void main(String args[])

 {

 int arr[] ={10,20,30,40,50};

 int i;

 System.out.print("Elements in Array is :\n");

 for(i=0; i<5; i++)

 {

 System.out.print(arr[i] + " ");

 }

 }

}

Output

 Elements in Array is

10 20 30 40 50

/*Program 2d array*/

Class 2darray

{

 Public static void main(String args[])
 {

 int[] [] a={{34,45},{67,78}};

 int i,j;
 for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)
 {

 System.out.print(a[i][j]);

}
 System.out.println();

}
}

Output 2*2=4

34 45

 67 78

Java Strings
Strings are used for storing text.

A String variable contains a collection of characters surrounded by double quotes:

Example

Create a variable of type String and assign it a value:

String s1 = "Hello guys ";

/*program to store string */

import java.io.*;

class a

{
 public static void main(String args[])

 {

 String a=”hello guys how r u?”;
 System.out.print(“String is “+a);

}
}

Output

String is hello guys how r u?

String Methods

1. length()

A String in Java is actually an object, which contain methods that can perform

certain operations on strings. For example, the length of a string can be found with

the length() method:

Example

String txt = “hello";

System.out.println("The length of the txt string is: " + txt.length());

Output

The length of the txt string is :5

2. toUpperCase():it is convert a string into upper letters

Example

String txt = "Hello World";

System.out.println(txt.toUpperCase());

 // Outputs "HELLO WORLD"

3.toLowerCase():it is convert a string into lower letters

Example

String txt = " HELLO WORLD ";

System.out.println(txt.toLowerCase());

Output

hello world

4. concat()

The + operator can be used between strings to combine them. This is

called concatenation:

Example

String firstName = "John";

String lastName = "Cina";

System.out.println(firstName+” “ concat() lastName);

Output

John Cina

5. charAt(int index): returns char value for the particular index

Example

String a = "John";

System.out.println(charAt(1));

Output: o

6.int indexOf(int ch) :It returns the specified char value index.

String firstName = "John";

System.out.println(indexOf(h));

Output: 2

Vector in java

Vector implements List Interface. Like ArrayList it also maintains insertion order

but it is rarely used in non-thread environment as it is synchronized and due to

which it gives poor performance in searching, adding, delete and update of its

elements.

Vector methods

1.addElement ():this is used to add elements in array

2.clear():this is used to delete values in vector

3.size():used to find size of vector

4. nextElement():It is used to display next value of vector

import java.util.*;

public class VectorExample {

 public static void main(String args[])

 {

 Vector vec = new Vector (2);

 vec.addElement("Apple");

 vec.addElement(1);

 System.out.println("Size is:"+vec.size());

 System.out.print(vec.nextElement() + " ");

 vec.clear();

System.out.println(vec.nextEleement());

 }

}

Output

Size is 2

Apple 1

WrapperClasses

Wrapper classes are those whose objects wraps a primitive data type within them.

In the java.lang package java provides a separate class for each of the primitive

data types namely Byte, Character, Double, Integer, Float, Long, Short.

Syntax

 Integer variable name=value;

import java.lang.*;

 class MyClass

 {

 public static void main(String[] args)

 {

 Integer myInt = 5;

 Double myDouble = 5.99;

 Character myChar = 'A';

 System.out.println(myInt);

 System.out.println(myDouble);

 System.out.println(myChar);

 }

}

5

5.99

A

INTERFACES(Multiple inheritance): Introduction;Defining

 Interfaces;ExtendingInterfaces;Implementing Interfaces;

AccessingInterfaceVariables, ImplementingMultipleInheritenceusingInterfaces

Java Interface
Another way to achieve abstraction in Java, is with interfaces.

An interface is a completely "abstract class" that is used to group related methods

with empty bodies:

To access the interface methods, the interface must be "implemented" (kinda like

inherited) by another class with the implements keyword (instead of extends). The

body of the interface method is provided by the "implement" class:

Syntax

 interface interface name

{

 Final variables ;

Public functions;

}

// Interface

interface Animal

 {

 public void animalSound()

 public void sleep();

}

class Pig implements Animal

 {

 public void animalSound()

{

 System.out.println("class pig method animal sound");

 }

 public void sleep()

{

 System.out.println(“class pig method sleep");

 }

}

class MyMainClass

{

 public static void main(String[] args)

{

 Pig myPig = new Pig();

 myPig.animalSound();

 myPig.sleep();

 }

}

Output:

class pig method animal sound

class pig method sleep

/*Example 2*/

interface add

{
final int a=10;

final int b=20;

 public void sum();
}

class A implements add

{

int c;

public void sum()

{

 c=a+b;

System.out.print(“sum is”+c);

}

}

class test

 {

 Public static void main(String args[])

{

 A ob=new A();

 ob.sum();

}}

 Sum is 30
Keywords

1. Interface keyword is used with interfaces

2. Variables must be final

3. Functions must be public

4. No object is used with interfaces

5. Interfaces implementes

Extends an interface

In below example, the interface B is extending another interface A. notice the

syntax – “interface B extends A”

interface A {

 void fa();

}

interface B extends A {

 void fb();

}

/*

 /* Interface extends another interface java example

 */

interface a1

{

public

 void show1();

}

interface b1 extends a1

{

public void show2();

}

class Test implements b1

{

 public void show1()

 {

 System.out.println(“function show1”);

}

 public void show2()

{

 System.out.println(“function show2”);

}

}

Class mainmethod

{

public static void main(String args[])

 {
 Test ob=new Test();

 ob.show1();

 ob.how2();

 }

}

Output

function show1

function show2

Sr.
No.

Key Class Interface

1

Supported Methods A class can have
both an abstract
as well as concrete
methods.

Interface can have
only abstract
methods.

2
Multiple Inheritance Multiple Inheritance

is not supported.
Interface supports
Multiple
Inheritance.

3
Supported Variables final, non-final,

static and non-
static variables

Only static and
final variables are
permitted

supported.

4
Keyword A class is declared

using class
keyword.

Interface is
declared using
interface keyword.

Package

Package in Java is a mechanism to encapsulate a group of classes, sub packages

and interfaces. Packages can be considered as data encapsulation (or data-hiding).

Types of packages:

Built-in Packages

These packages consist of a large number of classes which are a part of

Java API.Some of the commonly used built-in packages are:

1) java.lang: Contains language support classes(e.g classed which defines

primitive data types, math operations). This package is automatically imported.

2) java.io: Contains classed for supporting input / output operations.

3) java.util: Contains utility classes which implement data structures like Linked

List, Vector and support ; for Date / Time operations.

4) java.applet: Contains classes for creating Applets.

5) java.awt: Contain classes for implementing the components for graphical user

interfaces (like button , ;menus etc).

6) java.net: Contain classes for supporting networking operations.

User-defined packages

These are the packages that are defined by the user. First we create a

directory myPackage (name should be same as the name of the package). Then

create the MyClass inside the directory with the first statement being the package

names.

Steps for Creating package

1.Create a Package using keyword package.

 Package packagename;

2. Create a folder name same have package name. Note Package name and folder

name must be same.

3. Save package into folder

4. Create a new class with main function

5. Save this File outside of the package folder

How to import Package

There are Two ways to import package

1. import packagename.*;

2. import packagename.classname;

// Name of the package must be same as the directory

// under which this file is saved

package myPackage;

public class MyClass

{

 Public void disp()

 {

 System.out.println(“hello package”);

 }

}

Now we can use the MyClass class in our program.

/* import 'MyClass' class from 'names' myPackage */

Accessing package

There are two ways to call package

3. import packagename.*;

4. import packagename.Classname;

example:

import myPackage.MyClass;

public class PrintName

{

 public static void main(String args[])

 {

 MyClass ob=new MyClass();

 Ob.disp();

 }

}

Note : MyClass.java must be saved inside the myPackage directory since it is a

part of the package.

\

Hiding a java package
package myPackage;

public class MyClass1

{

 Public void disp1()

 {

 System.out.println(“hello package1”); //this is public

 }

}

public class MyClass2

{

 Public void disp()

 {

 System.out.println(“hello package2”); //this is private

 }

}

/*import multiple packages into single main class*/

package pack1;

public class class2

{
 public void disp2()

{

 System.out.print(“hello”);
}

}
package pack;

public class MyClass1

{

 Public void disp1()

 {

 System.out.println(“hello package1”); //this is public

 }

}

import pack.*;

import pack1.class2;

class test

{

 public Static void main(String args[])

 {

 myclass2 ob2=new myclass2();

class2 ob=new class2();

ob2.disp1();

ob2.disp2();

ob.call();

}

}

Using Scanner in Java

// Java program to read data of various types using Scanner class.

import java.util.Scanner;

public class ScannerDemo1

{

 public static void main(String[] args)

 {

 Scanner sc = new Scanner(System.in);

 String name = sc.nextLine();

 char gender = sc.next().charAt(0);

 int age = sc.nextInt();

 long mobileNo = sc.nextLong();

 double cgpa = sc.nextDouble();

 System.out.println("Name: "+name);

 System.out.println("Gender: "+gender);

 System.out.println("Age: "+age);

 System.out.println("Mobile Number: "+mobileNo);

 System.out.println("CGPA: "+cgpa);

 }

}

SECTION-C

MANAGING ERRORSANDEXCEPTIONS:- Introduction;

TypesofErrors;Exceptions;Exception Handling using

Try,CatchandFinallyblock:ThrowingOurOwnExceptions;Using
Exceptions for Debugging.

Error : An Error “indicates serious problems that a reasonable

application should not try to catch.”

Both Errors and Exceptions are the subclasses of java.lang.Throwable

class. Errors are the conditions which cannot get recovered by any
handling techniques

Exceptions : An Exception “indicates conditions that a reasonable

application might want to catch.”

Exceptions are the conditions that occur at runtime and may cause the

termination of program. But they are recoverable using try, catch and

throw keywords.
In Java, there are two types of exceptions:

1) Checked: are the exceptions that are checked at compile

time.

Example

 1.a syntax errors

 2. Missing semi colon

 3.Use Wrong variable name,function name.

4.Missing brackets .
2) Unchecked are the exceptions that are not checked at compiled time
or called run time error.

 Eg

1.A number divide by zero.
2. Store a value in out of memory space. For int a[5]={1,2,3,4,5,6}

3.Wrong Logic.c=a*b

Below is the list of important built-in exceptions in Java.

1. ArithmeticException
It is thrown when an exceptional condition has occurred in an

arithmetic operation.

2. ArrayIndexOutOfBoundsException

It is thrown to indicate that an array has been accessed with an

illegal index. The index is either negative or greater than or equal
to the size of the array.

3. ClassNotFoundException

This Exception is raised when we try to access a class whose
definition is not found

4. FileNotFoundException

This Exception is raised when a file is not accessible or does not
open.

5. IOException

It is thrown when an input-output operation failed or interrupted

6. InterruptedException

It is thrown when a thread is waiting , sleeping , or doing some

processing , and it is interrupted.

7. NoSuchFieldException

It is thrown when a class does not contain the field (or variable)
specified

8. NoSuchMethodException

It is thrown when accessing a method which is not found.

9. NullPointerException

This exception is raised when referring to the members of a null

object. Null represents nothing

10. NumberFormatException

This exception is raised when a method could not convert a string

into a numeric format.

Exception handling

If an exception occurs, which has not been handled by

programmer then program execution gets terminated and a

system generated error message is shown to the user.

Java try and catch Statement

The try statement allows you to define a block of code to be tested for

errors while it is being executed.

The catch statement allows you to define a block of code to be
executed, if an error occurs in the try block.

Syntax
try

{

 // Block of code to try
}

catch(Exception e)

{
 // Block of code to handle errors

}

/*Example divide a number by zero*/

public class error
{

 public static void main (String args[])

{
 int num1 = 15, num2 = 2;

 int result = 0;

 try
{

 result = num1/num2;

 System.out.println("The result is" +result);

 }

catch (ArithmeticException e)
{

 System.out.println ("Can't be divided by Zero"+e);

 }
 }

}

Java Multi-catch block

A try block can be followed by one or more catch blocks. Each catch

block must contain a different exception handler. So, if you have to
perform different tasks at the occurrence of different exceptions, use

java multi-catch block.

Points to remember
o At a time only one exception occurs and at a time only one catch

block is executed.

o All catch blocks must be ordered from most specific to most
general, i.e. catch for Arithmetic Exception must come before

catch for Exception.

Example 1
public class MultipleCatchBlock1 {

 public static void main(String[] args) {

 try{
 int a[]=new int[5];

 a[5]=30/0;

 }
 catch(ArithmeticException e)

 {

 System.out.println(“can not divide by zero");
 }

 catch(ArrayIndexOutOfBoundsException e)

 {
 System.out.println("ArrayIndexOutOfBounds Exception

occurs");

 }

finally

{
 System.out.println(“end”);

 }

}
}

Nested of try block: In Java, we can use a try block within a try

block.

class NestedTry {

 // main method
 public static void main(String args[])

 {

 try {

 int a[] = { 1, 2, 3, 4, 5 };

 System.out.println(a[5]);

 try {

 int x = a[2] / 0;

 }
 catch (ArithmeticException e2)

 {

 System.out.println("division by zero is not possible");
 }

 }

 catch (ArrayIndexOutOfBoundsException e1) {
 System.out.println("Element at such index does not

exists");

 }
 }

}

Throw own Exception

import java.io.*;

class MyException extends Exception

{

 public MyException(String s)
 {

 super(s);
 }

}

// A Class that uses above MyException

public class Main

{
 public static void main(String args[])

 {
 try

 {

 throw new MyException("hello");
 }

 catch (MyException ex)

 {

 System.out.println(ex.getMessage());

 }
 }

}

Output
Hello

APPLET PROGRAMMING:- Introduction; How Applets Differ from

Applications;AppletLife Cycle; Creating

 anExecutableApplet;PassingParameters
 toApplets;AligningtheDisplay;MoreaboutHTMLTags;DisplayingN

umericalValues;Getting Input from theUser.

Applet

An applet is a Java program that can be embedded into a web page. It

runs inside the web browser and works at client side. An applet is

embedded in an HTML page using the APPLET or OBJECT tag and
hosted on a web server.

Important points :
1. All applets are sub-classes (either directly or indirectly)

of java.applet.Applet class.

2. Applets are not stand-alone programs. Instead, they run within
either a web browser or an applet viewer. JDK provides a standard

applet viewer tool called applet viewer.

3. In general, execution of an applet does not begin at main() method.
4. Output of an applet window is not performed

by System.out.println(). Rather it is handled with various AWT

methods, such as drawString().

Features of Applets over HTML
 Displaying dynamic web pages of a web application.
 Playing sound files.

 Displaying documents

 Playing animations
 Create online forms

https://docs.oracle.com/javase/7/docs/api/java/applet/Applet.html

Life cycle of an applet :

1. init() : The init() method is the first method to be called. This is

where you should initialize variables. This method is called only

once during the run time of your applet.

2. start() : The start() method is called after init(). It is also called
to restart an applet after it has been stopped. Note that init() is

called once i.e. when the first time an applet is loaded
whereas start() is called each time an applet’s HTML document is

displayed onscreen.

3. paint() : The paint() method is called each time an AWT-based
applet’s output must be redrawn. paint() is also called when the

applet begins execution. Whatever the cause, whenever the applet

must redraw its output, paint() is called.

4. stop() : The stop() method is called when a web browser leaves
the HTML document containing the applet—when it goes to

another page, for example. When stop() is called, the applet is

probably running. You should use stop() to suspend threads that
don’t need to run when the applet is not visible.

5. destroy() : The destroy() method is called when the environment
determines that your applet needs to be removed completely from

memory. At this point, you should free up any resources the applet

may be using. The stop() method is always called
before destroy().

File one

Creating Hello World applet :

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorld extends Applet
{

 public void paint(Graphics g)

 {

 g.drawString("Hello World", 20, 20);
 }

}
Save it by

HelloWorld.java

File 2
<applet code=” HelloWorld.class” height=100

width=100></applet>

Save it by HelloWorld.html

 Run it by appletviewer RunHelloWorld.html

Passing arguments to java applet

import java.applet.Applet;

import java.awt.Graphics;

public class UseParam extends Applet{

public void paint(Graphics g){

String str=getParameter("msg");

g.drawString(str,50, 50);
}

}

 <applet code="UseParam.class" width="300" height="300">
<param name="msg" value="Welcome to applet">

</applet>

 the User in Java Applet

import java.awt.*;
import java.applet.*;

public class user extends Applet

{
 TextField t1, t2;

 public void init()

 {
 t1 = new TextField(10);

 t2 = new TextField(10);

 add(t1);

 add(t2);

 t1.setText("0");

 t2.setText("0");

 }
 public void paint(Graphics g)

 {

 int a=0,b=0,c=0;
 String str1,str2,str;

 g.drawString("Enter the number in each box",10,50);

 try

 {
 str1=t1.getText();

 a=Integer.parseInt(str1);

 str2=t2.getText();

 b=Integer.parseInt(str2);

 }
 catch(Exception e)

 {

 }
 c=a+b;

 str=String.valueOf(c);

 g.drawString("Sum is",10,15);

 g.drawString(str,100,75);
 }

}

Graphics programming

 Graphics is one of the most important features of Java. Java applets can

be written to draw lines, arcs, figures, images and text in different fonts

and styles. Different colors can also be incorporated in display.

The Graphics Class

The graphics class defines a number of drawing functions, Each shape
can be drawn edge-only or filled. To draw shapes on the screen, we may

call one of the methods available in the graphics class.

1.Lines Lines are drawn by means of the drawLine() method.

Syntax
void drawLine(int startX, int startY, int endX, int endY)

//Drawing Lines

import java.awt.*;

import java.applet.*;
/*

<applet code="Lines" width=300 Height=250>

</applet>
*/

public class Lines extends Applet

{
 public void paint(Graphics g)

 {
 g.drawLine(0,0,100,100);

 g.drawLine(0,100,100,0);

 g.drawLine(40,25,250,180);
 g.drawLine(5,290,80,19);

 }

}

2.Rectangle

The drawRect() and fillRect() methods display an outlined and filled

rectangle, respectively.

Syntax
void drawRect(int top, int left, int width, int height)

void fillRect(int top, int left, int width, int height)

import java.awt.*;
import java.applet.*;

/*

<applet code="Rectanlge" width=300 Height=300>
</applet>

*/

public class Rectanlge extends Applet

{
 public void paint(Graphics g)

 {

 g.drawRect(10,10,60,50);
 g.fillRect(100,100,100,0);

 g.drawRoundRect(190,10,60,50,15,15);

 g.fillRoundRect(70,90,140,100,30,40);
 }

}

3.Circles and Ellipses

The Graphics class does not contain any method for circles or ellipses.

To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval().

Syntax
void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

import java.awt.*;

import java.applet.*;
/*

<applet code="Ellipses" width=300 Height=300>

</applet>
*/

public class Ellipses extends Applet

{
 public void paint(Graphics g)

 {

 g.drawOval(10,10,60,50);
 g.fillOval(100,10,75,50);

 g.drawOval(190,10,90,30);

 g.fillOval(70,90,140,100);
 }

}

4.Drawing Polygons

Polygons are shapes with many sides. It may be considered a set of lines

connected together. The end of the first line is the beginning of the

second line, the end of the second line is the beginning of the third line,
and so on. Use drawPolygon() and fillPolygon() to draw arbitrarily

shaped figures.

Syntax
void drawPolygon(int ,[] , int y[], int numPointer)

void fillPolygon(int ,[] , int y[], int numPointer)
import java.awt.*;

import java.applet.*;

/*
<applet code="Polygon" width=300 Height=300>

</applet>

*/
public class Polygon extends Applet

{

 public void paint(Graphics g)
 {

 int xpoints[]={30,200,30,200,30};

 int ypoints[]={30,30,200,200,30};
 int num=5;

 g.drawPolygon(xpoints,ypoints,num);

 }
}

/*program display bar charts using java applets */
import java.awt.*;

import java.applet.*;

public class BarChart extends Applet

{

 int n=0;
 String label[];

 int value[];

 public void init() {

 setBackground(Color.pink);
 try {

 int n = Integer.parseInt(getParameter("Columns"));
 label = new String[n];

 value = new int[n];
 label[0] = getParameter("label1");

 label[1] = getParameter("label2");

 label[2] = getParameter("label3");
 label[3] = getParameter("label4");

 value[0] = Integer.parseInt(getParameter("c1"));

 value[1] = Integer.parseInt(getParameter("c2"));
 value[2] = Integer.parseInt(getParameter("c3"));

 value[3] = Integer.parseInt(getParameter("c4"));

 }
 catch(NumberFormatException e){}

 }

 public void paint(Graphics g)
 {

 for(int i=0;i<4;i++) {

 g.setColor(Color.black);
 g.drawString(label[i],20,i*50+30);

 g.setColor(Color.red);

 g.fillRect(50,i*50+10,value[i],40);
 }

 }

}

/* <applet code=BarChart width=400 height=400>

 <param name=c1 value=110>
 <param name=c2 value=150>

 <param name=c3 value=100>
 <param name=c4 value=170>

 <param name=label1 value=1991>

 <param name=label2 value=1992>
 <param name=label3 value=1993>

 <param name=label4 value=1994>

 <param name=Columns value=4>
</applet>

*/

Section-D

Java AWT

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-

based applications in java.

Java AWT components are platform-dependent i.e. components are displayed

according to the view of operating system. AWT is heavyweight i.e. its

components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

 AWT UI Elements:
 Following is the list of commonly used controls while designed GUI using AWT.

Sr. No. Control & Description

1
Label

A Label object is a component for placing text in a container.

import java.awt.*;

import java.applet.*;

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list
https://www.tutorialspoint.com/awt/awt_label.htm

class demo extends Applet

{

 public void init()

{

 Label lbl1=new Label(“label1”);

add(lbl1);

}

}

2
Button

This class creates a labeled button.

Label

A Label object is a component for placing text in a container.

Import java.awt.*’

Import java.applet.*’

public Class demo extends Applet

{

 Public void init()

{

https://www.tutorialspoint.com/awt/awt_button.htm
https://www.tutorialspoint.com/awt/awt_label.htm

 Button a=new Button(“Save”);

add(a);

}

}

3
Check Box

A check box is a graphical component that can be in either an on (true) or off (false) state.

Label

A Label object is a component for placing text in a container.

Import java.awt.*’

Import java.applet.*’

public Class demo extends Applet

{

 Public void init()

{

 Checkbox b=new Checkbox(“java”,true);

add(b);

}

}

https://www.tutorialspoint.com/awt/awt_checkbox.htm
https://www.tutorialspoint.com/awt/awt_label.htm

4
Check Box Group

The CheckboxGroup class is used to group the set of checkbox.

import java.awt.*;

public class CheckboxExample extends Applet

{

 void init()

 {

 Label lbl = new Label("Gender");

 CheckboxGroup s= new CheckboxGroup();

 Checkbox ChkMale = new Checkbox("Male",true,s);

 Checkbox Chkfemale = new Checkbox("Female",false,s);

 add(lbl);

 add(ChkMale);

 add(Chkfemale);

 }

}

5
List

The List component presents the user with a scrolling list of text items.

import java.awt.*;

public class ListExample extends Applet

{

 public void init()

{

 Label lblLanguage = new Label("Choose the Language");

 List lstLanguage = new List(3,true);

 lstLanguage.add("1");

https://www.tutorialspoint.com/awt/awt_checkboxgroup.htm
https://www.tutorialspoint.com/awt/awt_list.htm

 lstLanguage.add("2");

 lstLanguage.add("3");

 lstLanguage.add("C++");

 lstLanguage.add("java");

 add(lblLanguage); add(lstLanguage);

 }

}

6
Text Field

A TextField object is a text component that allows for the editing of a single line of text.

import java.awt.*;

public class ListExample extends Applet

{

 public void init()

 {

 Label lblLanguage = new Label("Choose the Language");

 List lstLanguage = new List(3,true);

 lstLanguage.add("pascal");

 lstLanguage.add("fortran");

 lstLanguage.add("C");

 lstLanguage.add("C++");

 lstLanguage.add("java");

 add(lblLanguage); add(lstLanguage);

 }

}

7
Text Area

A TextArea object is a text component that allows for the editing of a multiple lines of text.

1. import java.awt.*;

public class ListExample extends Applet

{

 public void init()

 {

 TextAreaExample(){

https://www.tutorialspoint.com/awt/awt_textfield.htm
https://www.tutorialspoint.com/awt/awt_textarea.htm

2. Frame f= new Frame();

3. TextArea area=new TextArea("Welcome to javatpoint");

4. area.setBounds(10,30, 300,300);

5. f.add(area);

6. f.setSize(400,400);

7. f.setLayout(null);

8. f.setVisible(true);

 }

}

8
Text Field

A TextField object is a text component that allows for the editing of a single line of text.

import java.awt.*;

public class ListExample extends Applet

{

 public void init()

 {

1.

 Choice c=new Choice();

2. c.setBounds(100,100, 75,75);

3. c.add("Item 1");

4. c.add("Item 2");

5. c.add("Item 3");

6. c.add("Item 4");

7. c.add("Item 5");

8. f.add(c);

9. f.setSize(400,400);

10. f.setLayout(null);

11. f.setVisible(true);

 }

}

https://www.tutorialspoint.com/awt/awt_textfield.htm

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

Container

The Container is a component in AWT that can contain another components

like buttons, textfields, labels etc. The classes that extends Container class are

known as container such as Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use

frame, dialog or another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have

other components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can

have other components like button, textfield etc.

Delegation Event Model

Back in the old days, Java used a Chain of Responsibility pattern to process events.

For example, when a button is clicked, a event is generated, which then is passed

through a chain of components. The chain of components is defined by the

hierarchy of classes and interfaces. An event is caught and handled by the handler

class.

Events, Sources, and Listeners

The delegation event model can be defined by three components: event, event

source, and event listeners.

 Events: The event object defines the change in state in the event source

class. For example, interacting with the graphical interfaces, such as clicking

a button or entering text via keyboard in a text box, item selection in a list,

all represent some sort of change in the state. The event object is used to

carry the required information about the state change. However, all events

are not cause by user interaction. There are events such as timer event,

hardware/software events, and so forth, that do not depend upon user

interaction. They occur automatically. We can define the procedure to

handle them once they occur.

 Event sources: Event sources are objects that cause the events to occur due

to some change in the property of the component. Because there can be

various types a component can trigger, each must be registered to a listener

to provide a suitable response.

 Event listeners: Event listeners are objects that are notified as soon as a

specific event occurs. Event listeners must define the methods to process the

notification they are interested to receive.

What is an Event?

Change in the state of an object is known as event i.e. event describes the change in state of

source. Events are generated as result of user interaction with the graphical user interface

components. For example, clicking on a button, moving the mouse, entering a character through

keyboard,selecting an item from list, scrolling the page are the activities that causes an event to

happen.

Types of Event

The events can be broadly classified into two categories:

 Foreground Events - Those events which require the direct interaction of user.They are generated as

consequences of a person interacting with the graphical components in Graphical User Interface. For

example, clicking on a button, moving the mouse, entering a character through keyboard,selecting an

item from list, scrolling the page etc.

 Background Events - Those events that require the interaction of end user are known as background

events. Operating system interrupts, hardware or software failure, timer expires, an operation

completion are the example of background events.

What is Event Handling?

Event Handling is the mechanism that controls the event and decides what should happen if an

event occurs. This mechanism have the code which is known as event handler that is executed

when an event occurs. Java Uses the Delegation Event Model to handle the events. This model

defines the standard mechanism to generate and handle the events.Let's have a brief

introduction to this model.

The Delegation Event Model has the following key participants namely:

 Source - The source is an object on which event occurs. Source is responsible for providing

information of the occurred event to it's handler. Java provide as with classes for source object.

 Listener - It is also known as event handler.Listener is responsible for generating response to an

event. From java implementation point of view the listener is also an object. Listener waits until it

receives an event. Once the event is received , the listener process the event an then returns.

 AWT Event Classes:
 Following is the list of commonly used event classes.

Sr.

No.

Control & Description

1
AWTEvent

It is the root event class for all AWT events. This class and its subclasses supercede the original

java.awt.Event class.

2
ActionEvent

The ActionEvent is generated when button is clicked or the item of a list is double clicked.

3
InputEvent

The InputEvent class is root event class for all component-level input events.

4
KeyEvent

https://www.tutorialspoint.com/awt/awt_awt_event.htm
https://www.tutorialspoint.com/awt/awt_action_event.htm
https://www.tutorialspoint.com/awt/awt_input_event.htm
https://www.tutorialspoint.com/awt/awt_key_event.htm

On entering the character the Key event is generated.

5
MouseEvent

This event indicates a mouse action occurred in a component.

6
TextEvent

The object of this class represents the text events.

7
WindowEvent

The object of this class represents the change in state of a window.

8
AdjustmentEvent

The object of this class represents the adjustment event emitted by Adjustable objects.

9
ComponentEvent

The object of this class represents the change in state of a window.

10
ContainerEvent

The object of this class represents the change in state of a window.

11
MouseMotionEvent

The object of this class represents the change in state of a window.

JAVA I/O HANDLING : I/O File Handling(InputStream

 &OutputStreams,FileInputStream&FileOutputStream,DataI/PandO/P

Streams,FileClass,ReaderandWriterStreams,RandomAccessFile).

File handling

File handling in Java implies reading from and writing data to a file. The File class

from the java.io package, allows us to work with different formats of files. In order

to use the File class, you need to create an object of the class and specify the

filename or directory name.

https://www.tutorialspoint.com/awt/awt_mouse_event.htm
https://www.tutorialspoint.com/awt/awt_text_event.htm
https://www.tutorialspoint.com/awt/awt_window_event.htm
https://www.tutorialspoint.com/awt/awt_adjustment_event.htm
https://www.tutorialspoint.com/awt/awt_component_event.htm
https://www.tutorialspoint.com/awt/awt_container_event.htm
https://www.tutorialspoint.com/awt/awt_mousemotion_event.htm
https://www.edureka.co/blog/java-tutorial/#obj

// Import the File class

import java.io.File

// Specify the filename

File obj = new File("filename.txt");

What is a Stream?

In Java, Stream is a sequence of data which can be of two types.

1. Byte Stream

This mainly incorporates with byte data. When an input is provided and executed

with byte data, then it is called the file handling process with a byte stream.

2. Character Stream

Character Stream is a stream which incorporates with characters. Processing of

input data with character is called the file handling process with a character stream.

1. Create a File

In this case, to create a file you can use the createNewFile() method. This

method returns true if the file was successfully created, and false if the file

already exists.

Let’s see an example of how to create a file in Java.

package FileHandling;

 import java.io.*;

public class CreateFile {

public static void main(String[] args) {

try

{

File myObj = new File("D:FileHandlingNewFilef1.txt");

}

} catch (IOException e)

{

System.out.println("An error occurred.");

}

}

}

https://docs.oracle.com/javase/tutorial/

Output

1 File created: NewFilef1.txt

2) Write to a File

In the following example, I have used the FileWriter class together with

its write() method to write some text into the file. Let’s understand this with the

help of a code.

import java.io.*;

public class WriteToFile

 {

public static void main(String[] args)

 {

try {

FileWriter myWriter = new FileWriter("NewFilef1.txt");

myWriter.write(“hello java");

myWriter.close();

System.out.println("Successfully wrote to the file.");

}

catch (IOException e)

 {

System.out.println("An error occurred.");

}

}

}

3. Read from a File

In the following example, I have used the Scanner class to read the contents of the text file.

package FileHandling;

// Import the File class

import java.io.File;

// Import this class to handle errors

import java.io.FileNotFoundException;

// Import the Scanner class to read text files

import java.util.Scanner;

public class ReadFromFile {

public static void main(String[] args) {

try {

// Creating an object of the file for reading the data

File myObj = new File("D:FileHandlingNewFilef1.txt");

Scanner myReader = new Scanner(myObj);

while (myReader.hasNextLine()) {

String data = myReader.nextLine();

System.out.println(data);

}

myReader.close();

} catch (FileNotFoundException e)

 {

System.out.println("An error occurred.");

}

}

}

	the User in Java Applet
	Java AWT
	 AWT UI Elements:
	What is an Event?
	Types of Event
	What is Event Handling?
	 AWT Event Classes:

